当前位置: X-MOL 学术IEEE Ind. Electron. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy Efficient Computing and Electronics: Devices to Systems [Book News]
IEEE Industrial Electronics Magazine ( IF 6.3 ) Pub Date : 2020-03-01 , DOI: 10.1109/mie.2020.2966835
Fernando A. Silva

T he immense quantity of data created by ubiquitous smart devices, communication systems, and Internet of Things devices demands powerful computing and storage infrastructures. The exponential increase in big data needs future handling performance of still-to-be-developed computers, not limited by the amount of energy dissipated to store, compute, and transmit data. Moreover, for every watt of dissipated energy, more than 1 W of air-conditioning is needed to remove the generated heat. Therefore, disruptive new device concepts, sensors, circuit architectures, and new materials are needed to keep the computing power up to requested in the coming decades. Energy Efficient Computing and Electronics: Devices to Systems discusses how to design energy-efficient electronic devices, circuits, and systems in the quest to lower computing energy consumption per bit. This timely book is divided into three sections, each including five chapters. The first section is devoted to emerging low-power devices that are able to obtain energy-efficient device structures. Chapter 1 presents the development of a process design kit for academic use for a fin field-effect transistor (FinFET)-based framework for the 7-nm node. Chapter 2 focuses on molecular phenomena at the gate dielectric/channel interface in MOSFETs. Chapter 3 deals with the development of tunneling FETs. Chapter 4 provides introductory physics concepts for the spintronic effects (magnetoresistance, spin-transfer torque, spin Hall effect, magnetoelectric effect). Chapter 5 uses hafniumoxide-based ferroelectric tunnel junctions to store data as a polarization state change. Section II is devoted to loss reduction in sensors, interconnects, and gallium nitride (GaN) Schottky power diodes. Chap ter 6 provides an overview of the current state of technology and scientific investigations in the field of X-ray sensors based on chromium compensated GaN for imaging systems. Chapters 7 and 8 introduce the application of verticalcavity surface-emitting lasers to lowpower optoelectronic interconnects, to reduce dissipated power while increasing speed, departing from the present copper-based interconnections. Chapter 9 investigates GaN and aluminum GaN heterostructures-based Schottky diodes with low turn-on voltage for energy-efficient 230-Vac–dc power supplies. Chapter 10 reviews the stoichiometrycontrolled crystal growth technique and its application to compound semiconductor oscillation devices to extend the terahertz region. Section III addresses aspects of systems design and related applications. Chapter 11 discusses issues related to the inherent physical noise (thermal noise, flicker noise, gate current noise, and shot noise) in low-power biosensing mixed-signal CMOS technology. Chapter 12 describes processor modeling using architecture description languages (ADLs) and presents ADLdriven methodologies for software toolkit generation, hardware synthesis exploration, and validation of programmable architectures. Chapter 13 concentrates on two highly challenging problems related to energy-efficient cloud data centers (CDCs): the minimization of the total cost of a CDC provider in a market where the bandwidth and energy cost show geographical diversity, and the minimization of the grid energy cost of a green CDC while meeting the performance of each delay-bounded request in an environment where grid price, wind speed, and solar irradiance show temporal diversity. Chapter 14 suggests an innovative way to implement neural networks combining ultralow-voltage hardware-based perceptrons and inertial neurons with analog communication links. Chapter 15 proposes a multipattern matching-based dynamic malware Digital Object Identifier 10.1109/MIE.2020.2966835

中文翻译:

节能计算和电子产品:从设备到系统 [图书新闻]

无处不在的智能设备、通信系统和物联网设备产生的海量数据需要强大的计算和存储基础设施。大数据的指数级增长需要尚未开发的计算机的未来处理性能,而不受存储、计算和传输数据耗散的能量数量的限制。此外,每耗散一瓦能量,就需要超过 1 瓦的空调来去除产生的热量。因此,需要颠覆性的新设备概念、传感器、电路架构和新材料,以保持未来几十年的计算能力满足要求。Energy Efficient Computing and Electronics: Devices to Systems 讨论如何设计节能电子设备、电路、以及寻求降低每比特计算能耗的系统。这本及时的书分为三个部分,每个部分包括五章。第一部分专门介绍能够获得节能器件结构的新兴低功耗器件。第 1 章介绍了用于学术用途的工艺设计套件的开发,该套件用于 7 纳米节点的基于鳍式场效应晶体管 (FinFET) 的框架。第 2 章重点介绍 MOSFET 中栅极电介质/沟道界面的分子现象。第 3 章介绍隧道 FET 的发展。第 4 章介绍了自旋电子效应(磁阻、自旋转移矩、自旋霍尔效应、磁电效应)的物理概念。第 5 章使用基于氧化铪的铁电隧道结将数据存储为极化状态变化。第二部分专门讨论传感器、互连和氮化镓 (GaN) 肖特基功率二极管的损耗降低。第 6 章概述了用于成像系统的基于铬补偿 GaN 的 X 射线传感器领域的技术和科学调查的当前状态。第 7 章和第 8 章介绍了垂直腔面发射激光器在低功率光电互连中的应用,与目前的铜基互连不同,在提高速度的同时降低功耗。第 9 章研究了基于 GaN 和铝 GaN 异质结构的具有低开启电压的肖特基二极管,用于节能 230-Vac-dc 电源。第 10 章回顾了化学计量控制的晶体生长技术及其在化合物半导体振荡器件中的应用,以扩展太赫兹区域。第三部分涉及系统设计和相关应用的各个方面。第 11 章讨论了与低功耗生物传感混合信号 CMOS 技术中固有物理噪声(热噪声、闪烁噪声、栅极电流噪声和散粒噪声)相关的问题。第 12 章描述了使用架构描述语言 (ADL) 的处理器建模,并介绍了用于软件工具包生成、硬件综合探索和可编程架构验证的 ADL 驱动方法。第 13 章集中讨论与节能云数据中心 (CDC) 相关的两个极具挑战性的问题:在带宽和能源成本显示出地域多样性的市场中,使 CDC 提供商的总成本最小化,在电网价格、风速和太阳辐照度显示出时间多样性的环境中,绿色 CDC 的电网能源成本最小化,同时满足每个延迟有界请求的性能。第 14 章提出了一种实现神经网络的创新方法,该方法将基于超低电压硬件的感知器和惯性神经元与模拟通信链接相结合。第15章提出了一种基于多模式匹配的动态恶意软件数字对象标识符10.1109/MIE.2020.2966835
更新日期:2020-03-01
down
wechat
bug