当前位置: X-MOL 学术Front. Comput. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inhibition of Long-Term Variability in Decoding Forelimb Trajectory Using Evolutionary Neural Networks With Error-Correction Learning
Frontiers in Computational Neuroscience ( IF 3.2 ) Pub Date : 2020-03-31 , DOI: 10.3389/fncom.2020.00022
Shih-Hung Yang, Han-Lin Wang, Yu-Chun Lo, Hsin-Yi Lai, Kuan-Yu Chen, Yu-Hao Lan, Ching-Chia Kao, Chin Chou, Sheng-Huang Lin, Jyun-We Huang, Ching-Fu Wang, Chao-Hung Kuo, You-Yin Chen

Objective: In brain machine interfaces (BMIs), the functional mapping between neural activities and kinematic parameters varied over time owing to changes in neural recording conditions. The variability in neural recording conditions might result in unstable long-term decoding performance. Relevant studies trained decoders with several days of training data to make them inherently robust to changes in neural recording conditions. However, these decoders might not be robust to changes in neural recording conditions when only a few days of training data are available. In time-series prediction and feedback control system, an error feedback was commonly adopted to reduce the effects of model uncertainty. This motivated us to introduce an error feedback to a neural decoder for dealing with the variability in neural recording conditions. Approach: We proposed an evolutionary constructive and pruning neural network with error feedback (ECPNN-EF) as a neural decoder. The ECPNN-EF with partially connected topology decoded the instantaneous firing rates of each sorted unit into forelimb movement of a rat. Furthermore, an error feedback was adopted as an additional input to provide kinematic information and thus compensate for changes in functional mapping. The proposed neural decoder was trained on data collected from a water reward-related lever-pressing task for a rat. The first 2 days of data were used to train the decoder, and the subsequent 10 days of data were used to test the decoder. Main Results: The ECPNN-EF under different settings was evaluated to better understand the impact of the error feedback and partially connected topology. The experimental results demonstrated that the ECPNN-EF achieved significantly higher daily decoding performance with smaller daily variability when using the error feedback and partially connected topology. Significance: These results suggested that the ECPNN-EF with partially connected topology could cope with both within- and across-day changes in neural recording conditions. The error feedback in the ECPNN-EF compensated for decreases in decoding performance when neural recording conditions changed. This mechanism made the ECPNN-EF robust against changes in functional mappings and thus improved the long-term decoding stability when only a few days of training data were available.

中文翻译:

使用具有纠错学习的进化神经网络来抑制解码前肢轨迹的长期可变性

目标:在脑机接口 (BMI) 中,由于神经记录条件的变化,神经活动和运动学参数之间的功能映射随时间变化。神经记录条件的可变性可能会导致长期解码性能不稳定。相关研究用几天的训练数据训练解码器,使其对神经记录条件的变化具有内在的鲁棒性。然而,当只有几天的训练数据可用时,这些解码器可能无法适应神经记录条件的变化。在时间序列预测和反馈控制系统中,通常采用误差反馈来减少模型不确定性的影响。这促使我们向神经解码器引入错误反馈,以处理神经记录条件的可变性。方法:我们提出了一种带有误差反馈的进化构造和剪枝神经网络(ECPNN-EF)作为神经解码器。具有部分连接拓扑的 ECPNN-EF 将每个排序单元的瞬时放电率解码为大鼠的前肢运动。此外,采用误差反馈作为附加输入以提供运动学信息,从而补偿功能映射的变化。所提出的神经解码器接受了从大鼠的水奖励相关杠杆按压任务中收集的数据的训练。前 2 天的数据用于训练解码器,随后 10 天的数据用于测试解码器。主要结果:评估了不同设置下的 ECPNN-EF,以更好地了解错误反馈和部分连接拓扑的影响。实验结果表明,当使用误差反馈和部分连接的拓扑时,ECPNN-EF 实现了显着更高的日常解码性能和更小的日常变化。意义:这些结果表明,具有部分连接拓扑的 ECPNN-EF 可以应对神经记录条件的日内和日间变化。当神经记录条件改变时,ECPNN-EF 中的错误反馈补偿了解码性能的下降。这种机制使 ECPNN-EF 对功能映射的变化具有鲁棒性,从而在只有几天的训练数据可用时提高了长期解码稳定性。意义:这些结果表明,具有部分连接拓扑的 ECPNN-EF 可以应对神经记录条件的日内和日间变化。当神经记录条件改变时,ECPNN-EF 中的错误反馈补偿了解码性能的下降。这种机制使 ECPNN-EF 对功能映射的变化具有鲁棒性,从而在只有几天的训练数据可用时提高了长期解码稳定性。意义:这些结果表明,具有部分连接拓扑的 ECPNN-EF 可以应对神经记录条件的日内和日间变化。当神经记录条件改变时,ECPNN-EF 中的错误反馈补偿了解码性能的下降。这种机制使 ECPNN-EF 对功能映射的变化具有鲁棒性,从而在只有几天的训练数据可用时提高了长期解码稳定性。
更新日期:2020-03-31
down
wechat
bug