当前位置: X-MOL 学术Engineering › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural and Magnetic Properties of Nanocomposite Nd-Fe-B Prepared by Rapid Thermal Processing
Engineering ( IF 12.8 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.eng.2019.12.008
Jinbo Yang , Jingzhi Han , Haidong Tian , Liang Zha , Xiongzuo Zhang , Chol Song Kim , Dong Liang , Wenyun Yang , Shunquan Liu , Changsheng Wang

Abstract Nanoscale permanent magnetic materials, which possess excellent magnetic and mechanical properties, thermal stability, and corrosion resistance, have become a research hotspot for permanent magnets. In reality, however, the obtained maximum energy product, (BH)max, is not satisfactory in comparison with the theory limit, especially for exchange-coupled nanocomposite magnets. The construction of an ideal microstructure still remains a challenge in the synthesis and preparation of nanoscale permanent magnets. This work reported the impact of rapid thermal process (RTP) with electron-beam heating on the microstructures of Nd12.5-xFe80.8+xB6.2Nb0.2Ga0.3 (x = 0, 2.5) nanocomposites. It was found that the crystallization time was greatly reduced, from 15 min under the conventional annealing conditions to 0.1 s under the RTP. For Nd2Fe14B single-phase materials, the crystallization temperature of the RTP ribbons decreased by about 248 °C compared with that of the ribbons produced by the conventional annealing method. A synergetic crystallization of the Nd2Fe14B and α-Fe phases was observed under the RTP, which restrained not only the shape, size distribution, and compositions of the hard and the soft phases, but also the interface between them. This modification effect became more obvious as the fraction of Fe increased. Due to the improvement in the uniformity of the Nd2Fe14B and α-Fe phases, and their grain size distribution, better magnetic properties were achieved using RTP in comparison with the conventional annealing method.

中文翻译:

快速热处理制备纳米复合材料 Nd-Fe-B 的结构和磁性能

摘要 纳米级永磁材料具有优异的磁力学性能、热稳定性和耐腐蚀性能,已成为永磁研究的热点。然而,实际上,与理论极限相比,获得的最大能量积 (BH)max 并不令人满意,尤其是对于交换耦合纳米复合磁体。在纳米级永磁体的合成和制备中,理想微结构的构建仍然是一个挑战。这项工作报告了电子束加热快速热处理 (RTP) 对 Nd12.5-xFe80.8+xB6.2Nb0.2Ga0.3 (x = 0, 2.5) 纳米复合材料微观结构的影响。发现结晶时间大大减少,从常规退火条件下的 15 分钟到 RTP 下的 0.1 秒。对于 Nd2Fe14B 单相材料,RTP 带的结晶温度与通过常规退火方法生产的带相比降低了约 248°C。在 RTP 下观察到 Nd2Fe14B 和 α-Fe 相的协同结晶,这不仅限制了硬相和软相的形状、尺寸分布和组成,而且还限制了它们之间的界面。随着Fe比例的增加,这种改性效果变得更加明显。由于 Nd2Fe14B 和 α-Fe 相的均匀性及其晶粒尺寸分布的改善,与传统退火方法相比,使用 RTP 可以获得更好的磁性能。与传统退火方法生产的带相比,RTP 带的结晶温度降低了约 248°C。在 RTP 下观察到 Nd2Fe14B 和 α-Fe 相的协同结晶,这不仅限制了硬相和软相的形状、尺寸分布和组成,而且还限制了它们之间的界面。随着Fe比例的增加,这种改性效果变得更加明显。由于 Nd2Fe14B 和 α-Fe 相的均匀性及其晶粒尺寸分布的改善,与传统退火方法相比,使用 RTP 可以获得更好的磁性能。与传统退火方法生产的带相比,RTP 带的结晶温度降低了约 248°C。在 RTP 下观察到 Nd2Fe14B 和 α-Fe 相的协同结晶,这不仅限制了硬相和软相的形状、尺寸分布和组成,而且还限制了它们之间的界面。随着Fe比例的增加,这种改性效果变得更加明显。由于 Nd2Fe14B 和 α-Fe 相的均匀性及其晶粒尺寸分布的改善,与传统退火方法相比,使用 RTP 可以获得更好的磁性能。和硬相和软相的组成,以及它们之间的界面。随着Fe比例的增加,这种改性效果变得更加明显。由于 Nd2Fe14B 和 α-Fe 相的均匀性及其晶粒尺寸分布的改善,与传统退火方法相比,使用 RTP 可以获得更好的磁性能。和硬相和软相的组成,以及它们之间的界面。随着Fe比例的增加,这种改性效果变得更加明显。由于 Nd2Fe14B 和 α-Fe 相的均匀性及其晶粒尺寸分布的改善,与传统退火方法相比,使用 RTP 可以获得更好的磁性能。
更新日期:2020-02-01
down
wechat
bug