当前位置: X-MOL 学术Int. J. Mech. Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomistic simulation of agglomeration of metal nanoparticles considering the induced charge density of surface atoms
International Journal of Mechanics and Materials in Design ( IF 3.7 ) Pub Date : 2020-04-18 , DOI: 10.1007/s10999-020-09489-8
Jae-Hyun Kim , Song-Hyun Cha , Se-Hyeon Kang , Youmie Park , Seonho Cho

To simulate the agglomeration of nanoparticles subjected to an external electric field, we develop a method to calculate the induced charge density in surface atoms to account for the inter-particle attractions between metallic nanoparticles, based on classical electrodynamics. A polarizable particle is subjected to dielectrophoresis force in a non uniform AC electric field. The induced charge density in a surface atom layer is redistributed to minimize the electric field inside the particle, restricting the total charge density of nanoparticles during the molecular dynamics simulations via a Lagrange multiplier method. The developed method is implemented in the LAMMPS code, where Lorentz and Coulomb forces applying on partially charged surface atoms are embedded to correct atomic motions in response to the applied AC electric field. In numerical examples, the electric field around a spherical nanoparticle shows good agreement with the analytical solution under external electric field. The proposed method is turned out to be more efficient for the problems of large particles since the ratio of surface to bulk atoms decreases as the size of particle increases. When an external electric field isexerted, the ordered aggregation of gold nanoparticles is observed in physical experiments and investigated through the LAMMPS simulations. The developed method successfully simulates that the nanoparticles are not only aligned in the direction of electric field but also formed lattice bonds due to the charges induced by the electric field.



中文翻译:

考虑表面原子感应电荷密度的金属纳米粒子团聚的原子模拟

为了模拟纳米颗粒在外部电场作用下的团聚,我们基于经典的电动力学方法,开发了一种计算表面原子中感应电荷密度的方法,以解释金属纳米颗粒之间的颗粒间吸引力。可极化的颗粒在不均匀的交流电场中经受介电泳作用。重新分布表面原子层中的感应电荷密度以最小化粒子内部的电场,从而在通过拉格朗日乘数法进行分子动力学模拟时限制了纳米粒子的总电荷密度。该开发的方法在LAMMPS代码中实现,其中嵌入了施加在部分带电表面原子上的洛伦兹力和库仑力,以响应于所施加的交流电场来校正原子运动。在数值示例中,球形纳米粒子周围的电场与外部电场下的分析溶液显示出良好的一致性。事实证明,所提出的方法对于大颗粒的问题更为有效,因为随着颗粒尺寸的增加,表面原子与本体原子的比率会降低。当施加外部电场时,在物理实验中观察到金纳米颗粒的有序聚集,并通过LAMMPS模拟对其进行了研究。所开发的方法成功地模拟了纳米颗粒不仅在电场方向上排列,而且由于电场感应的电荷而形成晶格键。事实证明,所提出的方法对于大颗粒的问题更为有效,因为随着颗粒尺寸的增加,表面原子与本体原子的比率会降低。当施加外部电场时,在物理实验中观察到金纳米颗粒的有序聚集,并通过LAMMPS模拟对其进行了研究。所开发的方法成功地模拟了纳米颗粒不仅在电场方向上排列,而且由于电场感应的电荷而形成晶格键。事实证明,所提出的方法对于大颗粒的问题更为有效,因为随着颗粒尺寸的增加,表面原子与本体原子的比率会降低。当施加外部电场时,在物理实验中观察到金纳米粒子的有序聚集,并通过LAMMPS模拟对其进行了研究。所开发的方法成功地模拟了纳米颗粒不仅在电场方向上排列,而且由于电场感应的电荷而形成晶格键。在物理实验中观察到了金纳米颗粒的有序聚集,并通过LAMMPS模拟对其进行了研究。所开发的方法成功地模拟了纳米颗粒不仅在电场方向上排列,而且由于电场感应的电荷而形成晶格键。在物理实验中观察到了金纳米颗粒的有序聚集,并通过LAMMPS模拟对其进行了研究。所开发的方法成功地模拟了纳米颗粒不仅在电场方向上排列,而且由于电场感应的电荷而形成晶格键。

更新日期:2020-04-21
down
wechat
bug