当前位置: X-MOL 学术BBA Bioenerg. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deactivation of mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I): Extrinsically affecting factors.
Biochimica et Biophysica Acta (BBA) - Bioenergetics ( IF 4.3 ) Pub Date : 2020-04-18 , DOI: 10.1016/j.bbabio.2020.148207
Vera G Grivennikova 1 , Grigory V Gladyshev 1 , Andrei D Vinogradov 1
Affiliation  

Mitochondrial NADH:ubiquinone oxidoreductase (proton translocating respiratory complex I) serves several essential functions in cell metabolism: it maintains the intramitochondrial NADH/NAD+ ratio, contributes to generation of the proton-motive force, and participates in physiological and/or pathophysiological production of so-called reactive oxygen species. A characteristic feature of complex I is a slow, compared with its catalytic turnover, transformation to its inactive (deactivated) state, a phenomenon operationally called A/D transition. Here we report data on several extrinsic factors affecting deactivation as observed in coupled or uncoupled bovine heart submitochondrial particles. The time course of the strongly temperature-dependent deactivation deviates from first-order kinetics, and this deviation is abolished in the presence of an SH-group-specific reagent. The residual fraction of activity attained upon extensive deactivation shows the same kinetics of NADH oxidation as the fully active enzyme does. The rate of complex I deactivation is only slightly pH dependent within the range of 7.0-8.5 and significantly increases at higher pH. ATP∙(Mg) decreases the rate of complex I deactivation in coupled SMP, and this effect is abolished if the proton-motive force generating ATPase activity of Fo∙F1 is precluded. Taken together, the data show that an equilibrium between the A and D forms of complex I exists. Possible mechanistic aspects of the deactivation process are discussed.

中文翻译:

线粒体NADH:泛醌氧化还原酶(呼吸复合体I)失活:外在影响因素。

线粒体NADH:泛醌氧化还原酶(质子转运呼吸复合体I)在细胞代谢中起几个基本功能:维持线粒体内NADH / NAD +比例,促进质子原动力的产生,并参与生理和/或病理生理学的产生所谓的活性氧。与它的催化转换相比,配合物I的一个特征是缓慢的转变为它的非活性(失活)状态,这种现象在操作上称为A / D过渡。在这里,我们报告了一些影响失活的外在因素的数据,如在耦合或非耦合牛心脏线粒体颗粒中观察到的。强烈依赖温度的失活的时间过程与一阶动力学不同,并且在存在SH-基团特异性试剂的情况下消除了这种偏差。彻底失活后获得的剩余活性部分显示出与完全活性酶相同的NADH氧化动力学。配合物I失活的速率在7.0-8.5范围内仅与pH值有关,而在较高的pH值下则显着增加。ATP∙(Mg)降低了偶联SMP中复合物I失活的速率,如果排除了产生Fo∙F1的质子动力产生ATPase的活性,这种作用就消失了。两者合计,数据表明复合物I的A和D形式之间存在平衡。讨论了停用过程的可能机制方面。彻底失活后获得的剩余活性部分显示出与完全活性酶相同的NADH氧化动力学。配合物I失活的速率在7.0-8.5范围内仅与pH值有关,而在较高的pH值下则显着增加。ATP∙(Mg)降低了偶联SMP中复合物I失活的速率,如果排除了产生Fo∙F1的质子动力产生ATPase活性,则该作用将被消除。两者合计,数据表明复合物I的A和D形式之间存在平衡。讨论了停用过程的可能机制方面。彻底失活后获得的剩余活性部分显示出与完全活性酶相同的NADH氧化动力学。配合物I失活的速率在7.0-8.5范围内仅与pH值有关,而在较高的pH值下则显着增加。ATP∙(Mg)降低了偶联SMP中复合物I失活的速率,如果排除了产生Fo∙F1的质子动力产生ATPase活性,则该作用将被消除。两者合计,数据表明复合物I的A和D形式之间存在平衡。讨论了停用过程的可能机制方面。如果排除了产生Fo∙F1的质子动力产生ATPase活性的作用,则该作用将被消除。两者合计,数据表明复合物I的A和D形式之间存在平衡。讨论了停用过程的可能机制方面。如果排除了产生Fo∙F1的质子动力产生ATPase活性的作用,则该作用将被消除。两者合计,数据表明复合物I的A和D形式之间存在平衡。讨论了停用过程的可能机制方面。
更新日期:2020-04-18
down
wechat
bug