当前位置: X-MOL 学术Proc. Inst. Mech. Eng. B J. Eng. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on laser-induced oxidation assisted micro-milling of Inconel 718
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ( IF 2.6 ) Pub Date : 2020-03-12 , DOI: 10.1177/0954405420904843
Hongjun Xia 1 , Guolong Zhao 1 , Maoshun Hu 1 , Liang Li 1 , Aqib Mashood Khan 1 , Ning He 1
Affiliation  

Poor surface quality and rapid tool wear are the main problems in micro-cutting of Inconel 718. In this study, a novel hybrid machining method named laser-induced oxidation assisted micro-milling is proposed to solve the aforementioned problems. A loose oxide layer and a relatively flat sublayer are formed on the material after laser irradiation. Under optimized laser parameters with a scanning speed of 1 mm/s and an average laser power of 4.5 W, the thicknesses of the oxide layer and the sublayer are 24 and 18 μm, respectively. The influence of cutting parameters on milling force, surface roughness, surface quality, and top burr size is studied in detail. Cutting force and thrust force in the proposed hybrid machining process are lower than those in the conventional micro-milling. Results show that for the investigated range of parameters, the optimal feed per tooth and depth of cut in the hybrid process are 3 μm/z and 3 μm, respectively. When using the optimal parameters, the surface roughness of the machined slot bottom is 108.5 nm. The top burr size on the up-milling side and the down-milling side is 26.8 and 36.2 μm, respectively. In addition, the tool wear mechanism is coating delamination in hybrid process, whereas chipping, coating delamination, tool nose breakage, and adhesion are the main tool wear mechanism in the conventional micro-milling. For the same amount of material removal, the proposed hybrid process can decrease the tool wear and enhance the service life of the micro-end mill as compared to conventional micro-milling.

中文翻译:

Inconel 718激光氧化辅助微铣削研究

表面质量差和刀具磨损快是 Inconel 718 微切削的主要问题。本研究提出了一种称为激光诱导氧化辅助微铣削的新型混合加工方法来解决上述问题。激光照射后在材料上形成松散的氧化层和相对平坦的亚层。在优化的激光参数下,扫描速度为 1 mm/s,平均激光功率为 4.5 W,氧化层和亚层的厚度分别为 24 和 18 μm。详细研究了切削参数对铣削力、表面粗糙度、表面质量和顶部毛刺尺寸的影响。所提出的混合加工工艺中的切削力和推力低于传统微铣削中的切削力和推力。结果表明,对于研究的参数范围,混合工艺中的最佳每齿进给量和切削深度分别为 3 μm/z 和 3 μm。使用最佳参数时,加工槽底的表面粗糙度为108.5 nm。上铣侧和下铣侧的顶部毛刺尺寸分别为 26.8 和 36.2 μm。此外,混合加工中刀具磨损机制是涂层分层,而传统微铣削中的主要刀具磨损机制是崩刃、涂层分层、刀尖断裂和粘附。对于相同的材料去除量,与传统微铣削相比,所提出的混合工艺可以减少刀具磨损并提高微立铣刀的使用寿命。加工槽底表面粗糙度为108.5nm。上铣侧和下铣侧的顶部毛刺尺寸分别为 26.8 和 36.2 μm。此外,混合加工中刀具磨损机制是涂层分层,而传统微铣削中的主要刀具磨损机制是崩刃、涂层分层、刀尖断裂和粘附。对于相同的材料去除量,与传统微铣削相比,所提出的混合工艺可以减少刀具磨损并提高微立铣刀的使用寿命。加工槽底表面粗糙度为108.5nm。上铣侧和下铣侧的顶部毛刺尺寸分别为 26.8 和 36.2 μm。此外,混合加工中刀具磨损机制是涂层分层,而传统微铣削中的主要刀具磨损机制是崩刃、涂层分层、刀尖断裂和粘附。对于相同的材料去除量,与传统微铣削相比,所提出的混合工艺可以减少刀具磨损并提高微立铣刀的使用寿命。刀尖断裂和粘连是传统微铣削刀具磨损的主要机制。对于相同的材料去除量,与传统微铣削相比,所提出的混合工艺可以减少刀具磨损并提高微立铣刀的使用寿命。刀尖断裂和粘连是传统微铣削刀具磨损的主要机制。对于相同的材料去除量,与传统微铣削相比,所提出的混合工艺可以减少刀具磨损并提高微立铣刀的使用寿命。
更新日期:2020-03-12
down
wechat
bug