当前位置: X-MOL 学术J. Infrared Millim. Terahertz Waves › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-dimensional Photonic Crystals Fabricated Using Stereolithographic Single Layer Assembly for the Terahertz Spectral Range
Journal of Infrared Millimeter and Terahertz Waves ( IF 2.9 ) Pub Date : 2020-03-04 , DOI: 10.1007/s10762-020-00685-3
Serang Park , Yanzeng Li , Brandon Norton , Micheal McLamb , Glenn D. Boreman , Tino Hofmann

A polymer-based one-dimensional photonic crystal with a photonic bandgap in terahertz frequency range was designed and fabricated through stereolithography and was characterized using THz spectroscopy. The photonic crystal studied here consists of alternating compact and low-density layers. The compact layers were fabricated from fully polymerized polymethacrylate without any intentional internal structure. The low-density layers consist of sub-wavelength sized columns, where the volume density was selected to provide sufficient contrast between the dielectric functions of adjacent layers. The photonic crystal samples were fabricated in a single step using a commercial stereolithography system and polymethacrylate compatible with the system. Transmission spectroscopy in a range from 82 to 125 GHz was used to determine the THz spectral response of the sample. The transmission data were analyzed using stratified optical layer model calculations. A distinct photonic bandgap with a center frequency of 111 GHz was observed in the experimental transmission spectra. Bruggeman effective medium approximation was found to accurately describe the dielectric function of the low-density layers. An excellent agreement between the relevant model parameters and the corresponding design parameters was found, indicating the versatility of the approach for the fabrication of photonic crystals for the THz spectral range.

中文翻译:

使用立体光刻单层组件制造的太赫兹光谱范围的一维光子晶体。

通过立体光刻设计和制造了具有太赫兹频率范围内的光子带隙的基于聚合物的一维光子晶体,并使用太赫兹光谱法对其进行了表征。这里研究的光子晶体由交替的致密层和低密度层组成。紧密层由完全聚合的聚甲基丙烯酸酯制成,没有任何有意的内部结构。低密度层由亚波长尺寸的列组成,在其中选择了体积密度以在相邻层的介电功能之间提供足够的对比度。使用商业立体光刻系统和与该系统兼容的聚甲基丙烯酸酯,一步制造光子晶体样品。使用82到125 GHz范围内的透射光谱法确定样品的THz光谱响应。使用分层光学层模型计算来分析传输数据。在实验透射光谱中观察到了中心频率为111 GHz的明显光子带隙。发现Bruggeman有效介质近似可以准确地描述低密度层的介电功能。在相关的模型参数和相应的设计参数之间找到了极好的一致性,表明在太赫兹光谱范围内光子晶体制造方法的多功能性。在实验透射光谱中观察到了中心频率为111 GHz的明显光子带隙。发现Bruggeman有效介质近似可以准确地描述低密度层的介电功能。在相关的模型参数和相应的设计参数之间找到了极好的一致性,表明在太赫兹光谱范围内光子晶体制造方法的多功能性。在实验透射光谱中观察到了中心频率为111 GHz的明显光子带隙。发现Bruggeman有效介质近似可以准确地描述低密度层的介电功能。在相关的模型参数和相应的设计参数之间找到了极好的一致性,表明在太赫兹光谱范围内光子晶体制造方法的多功能性。
更新日期:2020-03-04
down
wechat
bug