当前位置: X-MOL 学术Circuits Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Adaptive Energy Detection Scheme with Real-Time Noise Variance Estimation
Circuits, Systems, and Signal Processing ( IF 2.3 ) Pub Date : 2019-10-10 , DOI: 10.1007/s00034-019-01281-0
Libin K. Mathew , Shreejith Shanker , A. P. Vinod , A. S. Madhukumar

Energy detection-based spectrum sensing techniques are ideally suited for power-constrained cognitive radio applications because of their lower computational complexity compared to feature detection techniques. However, their detection performance is dependent on multiple factors like accuracy of noise variance estimation and signal-to-noise ratio (SNR). Many variations of energy detection techniques have been proposed to address these challenges; however, they achieve the desired detection accuracy at the cost of increased computational complexity. This restricts the use of enhanced energy detection schemes in power-constrained applications such as aeronautical communication. In this paper, an adaptive low-complexity energy detection scheme is proposed for spectrum sensing in an L-band Digital Aeronautical Communication System (LDACS) at lower SNR levels. Our scheme uses a real-time noise variance estimation technique using autocorrelation which is induced by the cyclic prefix property in LDACS signals. The proposed technique does not incur dedicated hardware blocks for noise variance estimation, leading to an efficient hardware implementation of the scheme without significant resource overheads. The simulation studies of the proposed scheme show that the desired accuracy (90% detection accuracy with only 10% of false alarms) can be achieved even at $$-16.5$$ - 16.5 dB SNR, significantly lowering the SNR wall over existing energy detection schemes.

中文翻译:

一种具有实时噪声方差估计的自适应能量检测方案

基于能量检测的频谱感测技术非常适合功率受限的认知无线电应用,因为与特征检测技术相比,它们的计算复杂度较低。然而,它们的检测性能取决于多种因素,如噪声方差估计的准确性和信噪比 (SNR)。已经提出了多种能量检测技术来应对这些挑战;然而,它们以增加计算复杂性为代价实现了所需的检测精度。这限制了在诸如航空通信等功率受限的应用中使用增强型能量检测方案。在本文中,提出了一种自适应低复杂度能量检测方案,用于 L 波段数字航空通信系统 (LDACS) 中较低 SNR 水平的频谱感测。我们的方案使用实时噪声方差估计技术,该技术使用由 LDACS 信号中的循环前缀属性引起的自相关。所提出的技术不会产生用于噪声方差估计的专用硬件块,从而导致该方案的有效硬件实现而没有显着的资源开销。所提出方案的仿真研究表明,即使在 $-16.5$$ - 16.5 dB SNR 下也可以实现所需的准确度(90% 的检测准确度,只有 10% 的误报),显着降低了现有能量检测的 SNR 壁垒计划。我们的方案使用实时噪声方差估计技术,该技术使用由 LDACS 信号中的循环前缀属性引起的自相关。所提出的技术不会产生用于噪声方差估计的专用硬件块,从而导致该方案的有效硬件实现而没有显着的资源开销。所提出方案的仿真研究表明,即使在 $-16.5$$ - 16.5 dB SNR 下也可以实现所需的准确度(90% 的检测准确度,只有 10% 的误报),显着降低了现有能量检测的 SNR 壁垒计划。我们的方案使用实时噪声方差估计技术,该技术使用由 LDACS 信号中的循环前缀属性引起的自相关。所提出的技术不会产生用于噪声方差估计的专用硬件块,从而导致该方案的有效硬件实现而没有显着的资源开销。所提出方案的仿真研究表明,即使在 $-16.5$$ - 16.5 dB SNR 下也可以实现所需的准确度(90% 的检测准确度,只有 10% 的误报),显着降低了现有能量检测的 SNR 壁垒计划。导致该方案的有效硬件实现,而无需大量资源开销。所提出方案的仿真研究表明,即使在 $-16.5$$ - 16.5 dB SNR 下也可以实现所需的准确度(90% 的检测准确度,只有 10% 的误报),显着降低了现有能量检测的 SNR 壁垒计划。导致该方案的有效硬件实现,而无需大量资源开销。所提出方案的仿真研究表明,即使在 $-16.5$$ - 16.5 dB SNR 下也可以实现所需的准确度(90% 的检测准确度,只有 10% 的误报),显着降低了现有能量检测的 SNR 壁垒计划。
更新日期:2019-10-10
down
wechat
bug