当前位置: X-MOL 学术Microelectron. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical method for optimization of thermal cycling in 3D-printed polymerase chain reaction device
Microelectronic Engineering ( IF 2.3 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.mee.2020.111306
Jaehyun Park , Heesung Park

Abstract A continuous-flow polymerase chain reaction (PCR) device with integrated heaters for DNA amplification was studied. We developed a numerical model to predict the temperature variations of a 3D-printed PCR device for different heater temperatures. The target temperatures at thermal zones for a successful PCR are 95 °C, 55 °C, and 72 °C for denaturation, annealing and extension, respectively. A numerical simulation was conducted to determine the heater temperatures required to compensate for heat loss. Our numerical model and optimization method were confirmed by comparison with the experimental results. Consequently, the compensated heater temperatures required to achieve the target temperatures are 97.9 °C, 56.6 °C and 74.1 °C. The proposed optimization method and numerical simulations will be useful in achieving highly effective thermal cycling in the 3D-printed PCR device.

中文翻译:

3D打印聚合酶链反应装置热循环优化数值方法

摘要 研究了一种带有集成加热器的用于DNA扩增的连续流动聚合酶链反应(PCR)装置。我们开发了一个数值模型来预测 3D 打印 PCR 设备在不同加热器温度下的温度变化。成功 PCR 的热区目标温度分别为 95 °C、55 °C 和 72 °C,用于变性、退火和延伸。进行数值模拟以确定补偿热损失所需的加热器温度。通过与实验结果的比较,验证了我们的数值模型和优化方法。因此,达到目标温度所需的补偿加热器温度为 97.9 °C、56.6 °C 和 74.1 °C。
更新日期:2020-04-01
down
wechat
bug