当前位置: X-MOL 学术Earth Surf.Process. Land. › 论文详情
Wood retention at inclined racks: Effects on flow and local bedload processes
Earth Surface Processes and Landforms ( IF 3.694 ) Pub Date : 2020-04-15 , DOI: 10.1002/esp.4864
Isabella Schalko

Large wood (LW) transport can increase greatly during floods, leading to accumulations at river infrastructures. To mitigate the potential flood hazard, racks are a common method to retain LW upstream of endangered settlements or infrastructures. The majority of LW retention racks consist of vertical bars and, therefore, disrupt bedload transport. It can be hypothesized that inclined racks reduce backwater rise and local scour, as wood will block the upper part of the rack, thereby increasing the open flow cross‐section below the accumulation. Flume experiments were conducted under clear water conditions to analyse backwater rise and local scour as a function of (1) rack inclination, (2) hydraulic inflow condition, (3) uniform bed material, and (4) LW volume. In addition, the first experiments were performed under live bed scour conditions to study the effect of bedload transport on local scour and backwater rise. Based on the experiments, backwater rise and local scour decrease with decreasing rack angle to the horizontal. LW predominantly accumulated at the upper part of the rack, leading to an open flow cross‐section below the accumulation. The effect of rack angle was included in existing design equations for backwater rise and local scour depth. In addition, the first experiments with bedload transport resulted in smaller backwater rise and local scour depth. This study contributes to an enhanced process understanding of wood retention and bedload transport at rack structures and an improved design of LW retention racks. © 2020 John Wiley & Sons, Ltd.
更新日期:2020-04-15

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug