当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-destructive in-operando investigation of catalyst layer degradation for water electrolyzers using synchrotron radiography
Materials Today Energy ( IF 9.3 ) Pub Date : 2020-04-15 , DOI: 10.1016/j.mtener.2020.100394
Olha Panchenko , Marcelo Carmo , Marcin Rasinski , Tobias Arlt , Ingo Manke , Martin Müller , Werner Lehnert

Unveiling degradation mechanisms is a difficult task encountered when characterizing materials and components for water electrolyzers, where for stationary applications these cells are expected to run for 50.000 h or more. From a R&D perspective, this incredibly long time-dependence makes the assessment of degradation mechanisms almost impracticable. Therefore, novel and advanced methodologies need to be demonstrated, aiding scientists to more quickly identify and effectively tackle the different stressors that lead to degradation. Here we show a novel approach where in-operando synchrotron radiography was used to access real-time electrode degradation. A real catalyst-coated membrane was assembled and tested under real water splitting conditions, where iridium catalyst detachment could be observed and semi-empirically quantified. For the first-time, we have also demonstrated a way to visualize and identify where bubble formation inside the catalyst-coated membrane occurs, and how it can trigger electrode degradation. This study shall open new avenues to quickly and properly unveil degradation mechanisms, methods that could also be used for other electrochemical devices such as batteries, fuel cells and solar water splitting technologies.



中文翻译:

同步辐射成像技术对水电解槽催化剂层降解的无损操作研究

揭示降解机理是表征水电解槽的材料和组件时遇到的一项艰巨任务,对于固定式应用而言,这些电解槽有望运行50.000小时或更长时间。从研发的角度来看,这种令人难以置信的长时间依赖性使得几乎不可能评估降解机理。因此,需要证明新颖和先进的方法,以帮助科学家更快地识别和有效解决导致退化的各种压力。在这里,我们表现出一种新的方法,其中在-operando同步加速器射线照相术用于获取实时电极降解。在真实的水分解条件下组装并测试了真实的涂覆有催化剂的膜,在该条件下可以观察到铱催化剂的分离并通过半经验定量。首次,我们还演示了一种可视化和识别催化剂涂层膜内部气泡形成的位置以及如何触发电极降解的方法。这项研究将开辟新途径,以迅速而适当地揭示降解机理,这些方法也可用于其他电化学装置,例如电池,燃料电池和太阳能水分解技术。

更新日期:2020-04-15
down
wechat
bug