当前位置: X-MOL 学术Bull. Volcanol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Infrasound generated by the 2016–2017 shallow submarine eruption of Bogoslof volcano, Alaska
Bulletin of Volcanology ( IF 3.5 ) Pub Date : 2020-01-31 , DOI: 10.1007/s00445-019-1355-0
John J. Lyons , Alexandra M. Iezzi , David Fee , Hans F. Schwaiger , Aaron G. Wech , Matthew M. Haney

The 2016–2017 shallow submarine eruption of Bogoslof volcano produced numerous infrasound signals over 9 months that were recorded on six Alaska Volcano Observatory (AVO) arrays at ranges of 59 to over 800 km from the volcano. The lack of geophysical monitoring near Bogoslof and the repeated production of volcanic clouds to flight levels made monitoring by remote infrasound critical during the eruption; for the first time, AVO relied extensively on automated infrasound detections from regional arrays to dispatch timely notifications of the ongoing activity. Most of the 70 eruptive events were detected on at least one array, but no array detected all of the events mainly because atmospheric conditions were highly variable during the eruption. Acoustic propagation modeling helps explain some of the variation in array detections but also highlights limitations in regional propagation models. To our knowledge, this is the first example of well-recorded infrasound from an explosive eruption occurring in shallow seawater, providing extensive insights into eruption dynamics in this unique environment. The dominance of low-frequency infrasound (0.1–1 Hz) is attributed to eruptions occurring beneath tens of meters of seawater. Higher-frequency infrasound signals were mostly limited to eruptions where the vent was isolated from major interaction with seawater or in several cases where a lava dome grew above sea level.

中文翻译:

2016-2017 年阿拉斯加博戈斯洛夫火山浅层海底喷发产生的次声波

2016 年至 2017 年博戈斯洛夫火山浅层海底喷发在 9 个月内产生了大量次声信号,这些信号在距离火山 59 至 800 多公里的六个阿拉斯加火山观测站 (AVO) 阵列上记录。博戈斯洛夫附近缺乏地球物理监测,火山云反复产生到飞行高度,使得在喷发期间远程次声监测变得至关重要;AVO 首次广泛依赖区域阵列的自动次声探测来及时发送正在进行的活动的通知。70 个喷发事件中的大多数至少在一个阵列上检测到,但没有一个阵列检测到所有事件,主要是因为在喷发期间大气条件变化很大。声传播建模有助于解释阵列检测中的一些变化,但也突出了区域传播模型的局限性。据我们所知,这是第一个在浅海水中发生爆炸性喷发的记录良好的次声的例子,提供了对这种独特环境中喷发动力学的广泛见解。低频次声 (0.1–1 Hz) 的主导地位归因于发生在数十米海水下的喷发。较高频率的次声信号主要限于火山喷发,其中火山口与海水的主要相互作用隔离开来,或者在某些情况下,熔岩穹顶在海平面以上生长。在这个独特的环境中提供对喷发动态的广泛见解。低频次声 (0.1–1 Hz) 的主导地位归因于发生在数十米海水下的喷发。较高频率的次声信号主要限于火山喷发,其中火山口与海水的主要相互作用隔离开来,或者在某些情况下,熔岩穹顶在海平面以上生长。在这个独特的环境中提供对喷发动态的广泛见解。低频次声 (0.1–1 Hz) 的主导地位归因于发生在数十米海水下的喷发。较高频率的次声信号主要限于火山喷发,其中火山口与海水的主要相互作用隔离开来,或者在某些情况下,熔岩穹顶在海平面以上生长。
更新日期:2020-01-31
down
wechat
bug