当前位置: X-MOL 学术Groundwater › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Flux Detection Probe to Quantify Dynamic Groundwater‐Surface Water Exchange in the Hyporheic Zone
Ground Water ( IF 2.6 ) Pub Date : 2020-03-28 , DOI: 10.1111/gwat.13001
Jonathan Thomle , Chris Strickland 1 , Tim C. Johnson 1 , Yue Zhu 1 , James Stegen 1
Affiliation  

A new probe was designed to quantify groundwater‐surface water exchange in the hyporheic zone under dynamic stage condition. Current methods focus on either vertical pore water velocity or Darcy flux measurements. Both parameters must be understood to evaluate residence time and mass flux of constituents. Furthermore, most instruments are not well suited for monitoring instantaneous velocity or flux under dynamic exchange conditions. For this reason, the flux detection probe (FDP) was designed that employs electrogeophysical measurements to estimate in situ sediment porosity, which can be used to convert pore water velocity to Darcy flux. Dynamic pore water velocity is obtained by monitoring fluid conductivity and temperature along the FDP probe. Pressure sensors deployed at the top and bottom of the probe provide the additional information necessary to estimate vertical permeability. This study focuses on the use of a geophysical method to estimate pore water velocity, porosity, and permeability within a controlled soil column where simulated river water displaces simulated groundwater. The difference between probe derived and theoretical pore water velocity using natural tracers such as electrical conductivity and temperature was −4.9 and 3.9% for downward flow and 1.1 and 12.8% for upward flow, respectively. The difference in porosity calculated from mass and volume packed in the soil column and probe measure porosity ranged between −3.2% and 1.5%. Also, the calculated hydraulic conductivity differed from probe derived values by −8.9%.

中文翻译:

通量检测探头,以量化在欠水区的动态地下水-地表水交换

设计了一种新的探头,以量化动态阶段条件下流变带中地下水-地表水交换。当前的方法集中于垂直孔隙水速度或达西通量测量。必须了解这两个参数才能评估组分的停留时间和质量通量。此外,大多数仪器都不适合在动态交换条件下监视瞬时速度或通量。因此,设计了一种通量检测探头(FDP),它采用电地球物理测量方法来估算原位沉积物孔隙度,该孔隙度可用于将孔隙水速度转换为达西通量。通过监测沿FDP探头的流体电导率和温度来获得动态孔隙水速度。部署在探头顶部和底部的压力传感器提供了估计垂直渗透率所需的附加信息。这项研究的重点是使用地球物理方法来估算受控河床中孔隙水的流速,孔隙率和渗透率,其中模拟河水取代了模拟地下水。使用自然示踪剂(例如电导率和温度)得出的探针导出速度与理论孔隙水速度之间的差分别为向下流量为-4.9和3.9%,向上流量为1.1和12.8%。根据填充在土壤柱中的质量和体积计算的孔隙率差异和探针测量的孔隙率范围为-3.2%至1.5%。同样,计算出的水力传导率与探头推导值相差-8.9%。这项研究的重点是使用地球物理方法来估算受控河床中孔隙水的流速,孔隙率和渗透率,其中模拟河水取代了模拟地下水。使用自然示踪剂(例如电导率和温度)得出的探针导出速度与理论孔隙水速度之间的差分别为向下流量为-4.9和3.9%,向上流量为1.1和12.8%。根据填充在土壤柱中的质量和体积以及探针测量的孔隙率计算得出的孔隙率差异在-3.2%至1.5%之间。同样,计算出的水力传导率与探头推导值相差-8.9%。这项研究的重点是使用地球物理方法来估算受控河床中孔隙水的流速,孔隙率和渗透率,其中模拟河水取代了模拟地下水。使用自然示踪剂(例如电导率和温度)得出的探针导出速度与理论孔隙水速度之间的差分别为向下流量为-4.9和3.9%,向上流量为1.1和12.8%。根据填充在土壤柱中的质量和体积以及探针测量的孔隙率计算得出的孔隙率差异在-3.2%至1.5%之间。同样,计算出的水力传导率与探头推导值相差-8.9%。使用自然示踪剂(例如电导率和温度)得出的探针导出速度与理论孔隙水速度之间的差分别为向下流量为-4.9和3.9%,向上流量为1.1和12.8%。根据填充在土壤柱中的质量和体积以及探针测量的孔隙率计算得出的孔隙率差异在-3.2%至1.5%之间。同样,计算出的水力传导率与探头推导值相差-8.9%。使用自然示踪剂(例如电导率和温度)得出的探针导出速度与理论孔隙水速度之间的差分别为向下流量为-4.9和3.9%,向上流量为1.1和12.8%。根据填充在土壤柱中的质量和体积以及探针测量的孔隙率计算得出的孔隙率差异在-3.2%至1.5%之间。同样,计算出的水力传导率与探头推导值相差-8.9%。
更新日期:2020-03-28
down
wechat
bug