当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical Cycling in the Venusian Atmosphere: A Full Photochemical Model From the Surface to 110 km
Journal of Geophysical Research: Planets ( IF 4.8 ) Pub Date : 2020-04-08 , DOI: 10.1029/2019je006159
C. J. Bierson 1 , X. Zhang 1
Affiliation  

Venus is an exceptional natural experiment to test our understanding of atmospheric sulfur chemistry. Previous modeling efforts have focused on understanding either the middle or lower atmosphere. In this work, we performed the first full atmosphere analysis of the chemical transport processes on Venus from the surface to 110 km using a 1‐D diffusion model with photochemistry. We focused on the cycling of chemical species between the upper and lower atmospheres and interactions between distinct species groups including SO urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0001, CO urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0002 + OCS, chlorides, NO urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0003, O urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0004, and S urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0005. We tested different eddy diffusivity profiles and investigated their influences on the vertical profiles of important species. We find that the assumed boundary conditions in previous models strongly impacted their simulation results. This has a particularly large effect for SO urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0006. We find the high SO urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0007 abundance in the lower atmosphere is readily transported into the middle atmosphere, far exceeding observed values. This implies some yet unknown chemistry or process limiting SO urn:x-wiley:jgre:media:jgre21306:jgre21306-math-0008 mixing. We summarize outstanding questions raised by this work and note chemical reactions that should be the highest priority for future laboratory studies and ab initio calculations.

中文翻译:

金星大气中的化学循环:从表面到110 km的完整光化学模型

金星是一项特殊的自然实验,目的在于测试我们对大气中硫化学的理解。以前的建模工作都集中于了解中层或较低层大气。在这项工作中,我们使用带有光化学的一维扩散模型对金星从表面到110 km的化学传输过程进行了首次全大气层分析。我们专注于上层和下层大气之间化学物种的循环以及SO ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0001,CO ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0002 + OCS,氯化物,NO ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0003,O ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0004和S等 不同物种之间的相互作用 ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0005。我们测试了不同的涡流扩散率剖面,并研究了它们对重要物种的垂直剖面的影响。我们发现,先前模型中假定的边界条件极大地影响了它们的仿真结果。这对SO的影响特别大 ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0006。我们发现ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0007较低大气层中的高SO 丰度很容易转移到中间大气层中,远远超过了观测值。这暗示了一些尚不了解的化学或工艺限制了SO的 ur:x-wiley:jgre:media:jgre21306:jgre21306-math-0008混合。我们总结了这项工作提出的悬而未决的问题,并指出化学反应应该是未来实验室研究和从头算的头等大事。
更新日期:2020-04-08
down
wechat
bug