当前位置: X-MOL 学术Med. Microbiol. Immunol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review on impedimetric immunosensors for pathogen and biomarker detection.
Medical Microbiology and Immunology ( IF 5.4 ) Pub Date : 2020-04-03 , DOI: 10.1007/s00430-020-00668-0
J Leva-Bueno 1 , Sally A Peyman 2 , P A Millner 1
Affiliation  

Since the discovery of antibiotics in the first quarter of the twentieth century, their use has been the principal approach to treat bacterial infection. Modernized medicine such as cancer therapy, organ transplantation or advanced major surgeries require effective antibiotics to manage bacterial infections. However, the irresponsible use of antibiotics along with the lack of development has led to the emergence of antimicrobial resistance which is considered a serious global threat due to the rise of multidrug-resistant bacteria (Wang et al. in Antibiotic resistance: a rundown of a global crisis, pp. 1645–1658, 2018). Currently employed diagnostics techniques are microscopy, colony counting, ELISA, PCR, RT-PCR, surface-enhanced Raman scattering and others. These techniques provide satisfactory selectivity and sensitivity (Joung et al. in Sens Actuators B Chem 161:824–831, 2012). Nevertheless, they demand specialized personnel and expensive and sophisticated machinery which can be labour-intensive and time-consuming, (Malvano et al. in Sensors (Switzerland) 18:1–11, 2018; Mantzila et al. in Anal Chem 80:1169–1175, 2008). To get around these problems, new technologies such as biosensing and lab-on-a-chip devices have emerged in the last two decades. Impedimetric immunosensors function by applying electrochemical impedance spectroscopy to a biosensor platform using antibodies or other affinity proteins such as Affimers (Tiede et al. in Elife 6(c):1–35, 2017) or other binding proteins (Weiss et al. in Electrochim Acta 50:4248–4256, 2005) as bioreceptors, which provide excellent sensitivity and selectivity. Pre-enrichment steps are not required and this allows miniaturization and low-cost. In this review different types of impedimetric immunosensors are reported according to the type of electrode and their base layer materials, either self-assembled monolayers or polymeric layers, composition and functionalization for different types of bacteria, viruses, fungi and disease biomarkers. Additionally, novel protein scaffolds, both antibody derived and non-antibody derived, used to specifically target the analyte are considered.

中文翻译:

用于病原体和生物标志物检测的阻抗免疫传感器综述。

自从二十世纪第一季度发现抗生素以来,使用抗生素一直是治疗细菌感染的主要方法。诸如癌症治疗,器官移植或高级大手术等现代化医学需要有效的抗生素来控制细菌感染。然而,不负责任地使用抗生素以及缺乏开发导致了抗生素耐药性的出现,由于多重耐药性细菌的增多,这种耐药性被认为是严重的全球威胁(Wang等人在《抗生素耐药性:全球危机,第1645-1658页,2018年)。当前采用的诊断技术是显微镜检查,菌落计数,ELISA,PCR,RT-PCR,表面增强拉曼散射等。这些技术提供了令人满意的选择性和灵敏性(Joung et al。参见Sens Actuators B Chem 161:824–831,2012年)。然而,他们需要专业人员和昂贵且复杂的机器,这些机器会劳动密集且费时((Malvano等人,传感器(瑞士))18:1-11,2018; Mantzila等人,Anal Chem 80:1169 – 1175,2008年)。为了解决这些问题,近二十年来出现了诸如生物传感和芯片实验室设备等新技术。通过使用抗体或其他亲和蛋白(如Affimers(Tiede等人,在Elife 6(c):1-35,2017年))或其他结合蛋白(Weiss等人,在Electrochim中),对生物传感器平台应用电化学阻抗谱,阻抗式免疫传感器就可以发挥功能Acta 50:4248–4256,2005)作为生物受体,具有出色的灵敏度和选择性。不需要预富集步骤,这可以实现小型化和低成本。在本综述中,根据电极及其基础层材料(自组装单层或聚合物层),不同类型细菌,病毒,真菌和疾病生物标记物的组成和功能,报道了不同类型的阻抗式免疫传感器。另外,考虑了用于特异性靶向分析物的新型蛋白质支架,抗体衍生的和非抗体衍生的。
更新日期:2020-04-03
down
wechat
bug