当前位置: X-MOL 学术Plant Cell Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
De novo indol-3-ylmethyl glucosinolate biosynthesis, and not long-distance transport, contributes to defence of Arabidopsis against powdery mildew.
Plant, Cell & Environment ( IF 7.3 ) Pub Date : 2020-04-10 , DOI: 10.1111/pce.13766
Pascal Hunziker 1 , Hassan Ghareeb 2 , Lena Wagenknecht 2 , Christoph Crocoll 1 , Barbara Ann Halkier 1 , Volker Lipka 2, 3, 4 , Alexander Schulz 1
Affiliation  

Powdery mildew is a fungal disease that affects a wide range of plants and reduces crop yield worldwide. As obligate biotrophs, powdery mildew fungi manipulate living host cells to suppress defence responses and to obtain nutrients. Members of the plant order Brassicales produce indole glucosinolates that effectively protect them from attack by non-adapted fungi. Indol-3-ylmethyl glucosinolate is constitutively produced in the phloem and transported to epidermal cells for storage. Upon attack, indol-3-ylmethyl glucosinolate is activated by CYP81F2 to provide broad-spectrum defence against fungi. How de novo biosynthesis and transport contribute to defence of powdery mildew-attacked epidermal cells is unknown. Bioassays and glucosinolate analysis demonstrate that GTR glucosinolate transporters are not involved in antifungal defence. Using quantitative live-cell imaging of fluorophore-tagged markers, we show that accumulation of the glucosinolate biosynthetic enzymes CYP83B1 and SUR1 is induced in epidermal cells attacked by the non-adapted barley powdery mildew Blumeria graminis f.sp. hordei. By contrast, glucosinolate biosynthesis is attenuated during interaction with the virulent powdery mildew Golovinomyces orontii. Interestingly, SUR1 induction is delayed during the Golovinomyces orontii interaction. We conclude that epidermal de novo synthesis of indol-3-ylmethyl glucosinolate contributes to CYP81F2-mediated broad-spectrum antifungal resistance and that adapted powdery mildews may target this process.

中文翻译:

从头合成吲哚-3-基甲基芥子油苷的生物合成,而不是长距离运输,有助于拟南芥防御白粉病。

白粉病是一种真菌病,会影响广泛的植物并降低全球作物的产量。作为专性生物营养菌,白粉病真菌可操纵活的宿主细胞来抑制防御反应并获得营养。植物十字花科成员生产吲哚芥子油苷,可有效保护它们免受未适应真菌的侵袭。吲哚-3-基甲基芥子油苷在韧皮部中组成性产生,并运输到表皮细胞中进行储存。受到攻击后,吲哚-3-基甲基芥子油苷被CYP81F2激活,以提供针对真菌的广谱防御。从头生物合成和运输如何有助于白粉病侵袭的表皮细胞的防御。生物测定法和芥子油苷分析表明,GTR芥子油苷转运蛋白不参与抗真菌防御。使用荧光标记的标记的定量活细胞成像,我们显示了在未适应的大麦白粉病Blumeria graminis f.sp.攻击的表皮细胞中诱导了芥子油苷生物合成酶CYP83B1和SUR1的积累。部落 相比之下,芥子油苷的生物合成在与强毒白粉病菌Golovinomyces orontii相互作用期间减弱。有趣的是,在沙门氏菌相互作用中SUR1的诱导被延迟。我们得出的结论是,吲哚-3-基甲基芥子油苷的表皮从头合成有助于CYP81F2介导的广谱抗真菌性,适应性白粉病可能是这一过程的目标。我们表明,在未适应的大麦白粉病Blumeria graminis f.sp.攻击的表皮细胞中诱导了芥子油苷生物合成酶CYP83B1和SUR1的积累。部落 相比之下,芥子油苷的生物合成在与强毒白粉病菌Golovinomyces orontii相互作用期间减弱。有趣的是,在沙门氏菌相互作用中SUR1的诱导被延迟。我们得出的结论是,吲哚-3-基甲基芥子油苷的表皮从头合成有助于CYP81F2介导的广谱抗真菌性,适应性白粉病可能是这一过程的目标。我们表明,在未适应的大麦白粉病Blumeria graminis f.sp.攻击的表皮细胞中诱导了芥子油苷生物合成酶CYP83B1和SUR1的积累。部落 相比之下,芥子油苷的生物合成在与强毒白粉病菌Golovinomyces orontii相互作用期间减弱。有趣的是,在沙门氏菌相互作用中SUR1的诱导被延迟。我们得出的结论是,吲哚-3-基甲基芥子油苷的表皮从头合成有助于CYP81F2介导的广谱抗真菌性,适应性白粉病可能是这一过程的目标。SUR1诱导被延迟在戈洛氏菌相互作用中。我们得出的结论是,吲哚-3-基甲基芥子油苷的表皮从头合成有助于CYP81F2介导的广谱抗真菌性,适应性白粉病可能是这一过程的目标。SUR1诱导被延迟在戈洛氏菌相互作用中。我们得出的结论是,吲哚-3-基甲基芥子油苷的表皮从头合成有助于CYP81F2介导的广谱抗真菌性,适应性白粉病可能是这一过程的目标。
更新日期:2020-04-10
down
wechat
bug