当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Feasibility of S-rich streams valorization through a two-step biosulfur production process.
Chemosphere ( IF 8.8 ) Pub Date : 2020-04-08 , DOI: 10.1016/j.chemosphere.2020.126734
M Mora 1 , E Fernández-Palacios 1 , X Guimerà 2 , J Lafuente 1 , X Gamisans 2 , D Gabriel 1
Affiliation  

A bioscrubbing process named SONOVA has been developed, tested and assessed herein to valorize flue gases containing SOx. The process consists in a first scrubbing stage, to absorb and oxidize SO2 to sulfate, followed by a two-step biological stage. It consists of (1) an up-flow anaerobic sludge (UASB) reactor to reduce sulfate to sulfide with crude glycerol and (2) a continuous stirred tank reactor (CSTR) to partially oxidize sulfide to elemental sulfur (S0). SONOVA integrates the reutilization of resources, using the effluent of the biological stage as a sorbent agent and the residual heat of flue gases to dry the product. S0 is then obtained as a value-added product, which nowadays is produced from fossil fuels. In this research, SO2 concentrations up to 4000 ppmv were absorbed in 2 s of gas contact time in the spray-scrubber with removal efficiencies above 80%. The UASB reduced up to 9.3 kg S-Sulfate m-3 d-1 with sulfide productivities of 6 kg S m-3 d-1 at an hydraulic retention time (HRT) as low as 2 h. Finally, CSTR was fed with the UASB effluent and operated at HRT ranging from 12 h to 4 h without biomass wash-out. Sulfide was fully oxidized to S0 with a productivity of 2.3 kg S m-3 d-1 at the lowest HRT tested. Overall, this research has explored not only maximum capabilities of each SONOVA stage but has also assessed the interactions between the different units, which opens up the possibility of recovering S0 from harmful SOx emissions, optimizing resources utilization and costs.

中文翻译:

通过分两步生产生物硫的方法,对富含S的物流进行增值的可行性。

本文已经开发,测试和评估了一种名为SONOVA的生物洗涤工艺,以对含有SOx的烟气进行增值。该过程包括第一个洗涤阶段,以吸收SO2并将其氧化为硫酸盐,然后是两步生物阶段。它由(1)上流厌氧污泥(UASB)反应器与粗甘油将硫酸盐还原为硫化物和(2)连续搅拌釜反应器(CSTR)将硫化物部分氧化为元素硫(SO)组成。SONOVA利用生物阶段的废水作为吸附剂以及烟道气的余热来干燥产品,从而整合了资源的再利用。然后将SO作为增值产品获得,如今它是由化石燃料生产的。在这项研究中 在喷雾洗涤器中,气体接触时间2 s内吸收的SO2浓度高达4000 ppmv,去除效率超过80%。在低至2 h的水力停留时间(HRT)下,UASB最多可还原9.3 kg S-硫酸盐m-3 d-1,硫化物生产率为6 kg S m-3 d-1。最后,向CSTR供料UASB废水,并在HRT下运行12h至4h,而不会洗掉生物质。在最低的HRT下,硫化物被完全氧化为SO,生产率为2.3 kg S m-3 d-1。总的来说,这项研究不仅探索了每个SONOVA阶段的最大能力,而且还评估了不同单元之间的相互作用,这为从有害SOx排放中回收SO,优化资源利用和成本提供了可能性。在水力停留时间(HRT)低至2 h时,硫化物生产率为6 kg S m-3 d-1的3 kg S-硫酸盐m-3 d-1。最后,向CSTR供料UASB废水,并在HRT下运行12h至4h,而不会洗掉生物质。在最低的HRT下,硫化物被完全氧化为SO,生产率为2.3 kg S m-3 d-1。总的来说,这项研究不仅探索了每个SONOVA阶段的最大能力,而且还评估了不同单元之间的相互作用,这为从有害SOx排放中回收SO,优化资源利用和成本提供了可能性。在水力停留时间(HRT)低至2 h时,硫化物生产率为6 kg S m-3 d-1的3 kg S-硫酸盐m-3 d-1。最后,向CSTR供料UASB废水,并在HRT下运行12h至4h,而不会洗掉生物质。在最低的HRT下,硫化物被完全氧化为SO,生产率为2.3 kg S m-3 d-1。总的来说,这项研究不仅探索了每个SONOVA阶段的最大能力,而且还评估了不同单元之间的相互作用,这为从有害SOx排放中回收SO,优化资源利用和成本提供了可能性。在最低的HRT测试下为3 kg S m-3 d-1。总的来说,这项研究不仅探索了每个SONOVA阶段的最大能力,而且还评估了不同单元之间的相互作用,这为从有害SOx排放中回收SO,优化资源利用和成本提供了可能性。在最低的HRT测试下为3 kg S m-3 d-1。总的来说,这项研究不仅探索了每个SONOVA阶段的最大能力,而且还评估了不同单元之间的相互作用,这为从有害SOx排放中回收SO,优化资源利用和成本提供了可能性。
更新日期:2020-04-08
down
wechat
bug