当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.jallcom.2020.155060
Thibeorchews Prasankumar , J. Vigneshwaran , Muniyandi Bagavathi , Sujin Jose

Abstract Spinel LiMn2O4 has been gaining more attention for supercapacitor applications due to its abundance, low cost, environmental friendliness, and high energy density as well as good rate capability. In this work nanostructured multimetal oxide LiMn2O4 was synthesized using expeditious, eco-friendly, glucose mediated simple microwave irradiation method. A detailed study has been performed to correlate the phase structure, surface morphology, redox reaction at the electroactive species and its potential impact on the electrochemical performance as the electrode material. The synthesized spinel LiMn2O4 electrode exhibits a good specific capacitance of 276 F g −1 and 220 F g−1 in aqueous (KOH) and non-aqueous (LiClO4/ethylene carbonate (EC)) electrolytes respectively at a scan rate of 20 mV s−1. In aqueous electrolyte, the reaction kinetics of supercapacitors became very fast which is responsible for the exhibited high capacitance. Excellent capacitance retention of 90% even after 2000 cycles was achieved for this spinel structure. This indicates that the aqueous electrolyte and unique spinel structure are favourable for superfast redox kinetics of the prepared LiMn2O4 due to its higher ionic conductivity and electrochemical stability.

中文翻译:

尖晶石 LiMn2O4 的快速环保合成及其制造超级电容器的潜力

摘要 尖晶石LiMn2O4由于其储量丰富、成本低、环境友好、能量密度高以及倍率性能好等优点在超级电容器应用中受到越来越多的关注。在这项工作中,使用快速、环保、葡萄糖介导的简单微波辐射方法合成了纳米结构的多金属氧化物 LiMn2O4。已经进行了详细的研究,以关联电活性物质的相结构、表面形态、氧化还原反应及其对作为电极材料的电化学性能的潜在影响。合成的尖晶石 LiMn2O4 电极在水性 (KOH) 和非水性 (LiClO4/碳酸亚乙酯 (EC)) 电解质中以 20 mV s 的扫描速率表现出良好的比电容,分别为 276 F g -1 和 220 F g-1 -1。在水性电解质中,超级电容器的反应动力学变得非常快,这是表现出高电容的原因。即使在 2000 次循环后,这种尖晶石结构也实现了 90% 的优异电容保持率。这表明水性电解质和独特的尖晶石结构有利于制备的 LiMn2O4 的超快氧化还原动力学,因为它具有更高的离子电导率和电化学稳定性。
更新日期:2020-09-01
down
wechat
bug