当前位置: X-MOL 学术Int. J. Rock Mech. Min. Sci. › 论文详情
A new method for determining the crack classification criterion in acoustic emission parameter analysis
International Journal of Rock Mechanics and Mining Sciences ( IF 3.780 ) Pub Date : 2020-04-08 , DOI: 10.1016/j.ijrmms.2020.104323
Zheng-Hu Zhang; Jian-Hui Deng

At a microscopic scale, the failure of brittle materials results from crack initiation, propagation and coalescence. Acoustic emission (AE) technique, especially parameter analysis, has been widely applied to investigate cracking process and mechanism in civil engineering. However, crack classification in AE parameter analysis mostly derives from the empirical relation between the RA value and the average frequency, and the crack classification criterion, i.e., the optimal transition line between shear and tensile cracks in the parameter analysis has not been determined yet. Based on statistical analysis of dominant frequency characteristics of AE signals, a new method is proposed for determining the optimal transition line for crack classification in AE parameter analysis. Spectrum analyses of AE waveform data in the representative specimens are carried out to acquire the dominant frequency of AE waveforms. Proportions of waveforms distributed in low and high dominant frequency bands (L-type and H-type waveforms) are determined. The ratios of tensile and shear cracks, viewed as measurements, are determined by the statistical analysis of dominant frequency characteristics of AE waveforms. For a series of different transition line, the predicted ratios of tensile and shear cracks in AE parameter analysis are determined. The optimal transition line is determined to be the one corresponding to the least square difference between predicted data and measurements. The determined optimal transition line can be directly applied for crack classification in AE parameter analysis in the subsequent experiments of this brittle material. The reliability of the proposed method were validated by laboratory tests of rock subjected to compression. It can be found that the optimal transition line in the parameter analysis is approximately from 1:100 to 1:500 for brittle rock under compression. The findings in this study contributes to the enhancement of the accuracy and efficiency of AE source mechanism and damage process analysis.
更新日期:2020-04-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug