当前位置: X-MOL 学术J. Geophys. Res. Biogeosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation
Journal of Geophysical Research: Biogeosciences ( IF 3.7 ) Pub Date : 2020-04-08 , DOI: 10.1029/2019jg005252
Shufen Pan 1 , Jia Yang 1, 2 , Hanqin Tian 1 , Hao Shi 1, 3 , Jinfeng Chang 4 , Philippe Ciais 4 , Louis Francois 5 , Katja Frieler 6 , Bojie Fu 3 , Thomas Hickler 7, 8 , Akihiko Ito 9 , Kazuya Nishina 9 , Sebastian Ostberg 6 , Christopher P.O. Reyer 6 , Sibyll Schaphoff 6 , Jörg Steinkamp 7, 10 , Fang Zhao 6
Affiliation  

Carbon fluxes at the land‐atmosphere interface are strongly influenced by weather and climate conditions. Yet what is usually known as “climate extremes” does not always translate into very high or low carbon fluxes or so‐called “carbon extremes.” To reveal the patterns of how climate extremes influence terrestrial carbon fluxes, we analyzed the interannual variations in ecosystem carbon fluxes simulated by the Terrestrial Biosphere Models (TBMs) in the Inter‐Sectoral Impact Model Intercomparison Project. At the global level, TBMs simulated reduced ecosystem net primary productivity (NPP; 18.5 ± 9.3 g C m−2 yr−1), but enhanced heterotrophic respiration (Rh; 7 ± 4.6 g C m−2 yr−1) during extremely hot events. TBMs also simulated reduced NPP (60.9 ± 24.4 g C m−2 yr−1) and reduced Rh (16.5 ± 11.4 g C m−2 yr−1) during extreme dry events. Influences of precipitation extremes on terrestrial carbon uptake were larger in the arid/semiarid zones than other regions. During hot extremes, ecosystems in the low latitudes experienced a larger reduction in carbon uptake. However, a large fraction of carbon extremes did not occur in concert with either temperature or precipitation extremes. Rather these carbon extremes are likely to be caused by the interactive effects of the concurrent temperature and precipitation anomalies. The interactive effects showed considerable spatial variations with the largest effects on NPP in South America and Africa. Additionally, TBMs simulated a stronger sensitivity of ecosystem productivity to precipitation than satellite estimates. This study provides new insights into the complex ecosystem responses to climate extremes, especially the emergent properties of carbon dynamics resulting from compound climate extremes.

中文翻译:

气候极端与碳极端:陆地碳通量对温度和降水的响应

陆地-大气界面的碳通量受天气和气候条件的强烈影响。然而,通常所说的“气候极端”并不总是转化为非常高或很低的碳通量或所谓的“碳极端”。为了揭示气候极端事件如何影响陆地碳通量的模式,我们分析了部门间影响模型比较项目中的陆地生物圈模型(TBM)模拟的生态系统碳通量的年际变化。在全球一级,TBMs模拟降低了生态系统的净初级生产力(NPP; 18.5±9.3 g C m -2  yr -1),但增强了异养呼吸(Rh; 7±4.6 g C m -2  yr -1))。TBM还模拟了减少的NPP(60.9±24.4 g C m -2  yr -1)和减少的Rh(16.5±11.4 g C m -2  yr -1))在极端干燥的天气。在干旱/半干旱地区,极端降水对陆地碳吸收的影响大于其他地区。在极端炎热的季节,低纬度地区的生态系统碳吸收量下降幅度更大。但是,绝大部分的碳极端事件都没有与温度或降水极端事件同时发生。相反,这些碳极端事件可能是由同时发生的温度和降水异常的相互作用造成的。互动效应显示出很大的空间变化,对南美和非洲的NPP影响最大。此外,TBMs模拟的生态系统生产力对降水的敏感性比卫星估计的要强。这项研究为复杂的生态系统对极端气候的反应提供了新的见解,
更新日期:2020-04-22
down
wechat
bug