当前位置: X-MOL 学术J. Metamorph. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High‐P granulites of the Songshugou area (Qinling Orogen, east‐central China): Petrography, phase relations, and U/Pb zircon geochronology
Journal of Metamorphic Geology ( IF 3.4 ) Pub Date : 2020-04-12 , DOI: 10.1111/jmg.12527
Thomas Bader 1, 2 , Lifei Zhang 1 , Xiaowei Li 2 , Bin Xia 3 , Leander Franz 4 , Christian Capitani 4 , Qingyun Li 1
Affiliation  

High‐pressure (HP) granulites provide telling records of mineral reactions at upper mantle to lower crustal levels and key information on the fate of material in subduction systems. The latter especially applies when they abut eclogite and mantle dunite because such rock associations are crucial for understanding the incompletely known processes at the interface of converging plates. A continental arc, active c. 520–395 Ma ago, formed an enigmatic example of such a rock association in the Songshugou area, Qinling Orogen. To unravel the juxtaposition of the distinct rocks, this study combines petrography, phase equilibria modelling, conventional thermobarometry, and zircon U–Th–Pb–Ti–REE analysis. Two mafic HP granulites, which contain the mineral assemblages garnet–clinopyroxene–plagioclase–rutile–mesoperthite–quartz and garnet–clinopyroxene–plagioclase–rutile, experienced peak metamorphic conditions of ≤1.4 GPa, 860°C and ~1.3 GPa, ≥910°C, respectively. During decompression and cooling, at 489 ± 4 Ma, amphibole lamellae unmixed from a clinopyroxene solid solution and orthopyroxene in part replaced garnet. A felsic HP granulite shows equilibration of garnet, perthite, antiperthite, kyanite, quartz, and rutile at 810–860°C, ~1.2 GPa, sillimanite growth during decompression, and upper amphibolite facies cooling at 510 ± 4 Ma. Though the thermobarometric data are just within the methodological errors, the U/Pb zircon ages imply the HP granulites did not evolve coherently. The HP granulites either represent foundered lower arc crust or originated from subduction erosion because their geochemistry is indistinguishable from that of the hanging‐wall plate. Published and new pressure–temperature–time–deformation paths converge at ~710°C, ~0.9 GPa, and ≲470 Ma, implying exhumation tectonics juxtaposed the HP granulites with a mélange of eclogite and mantle dunite at lower crustal levels. This study highlights that lower arc crust can comprise material of diverse evolution.
更新日期:2020-04-12
down
wechat
bug