当前位置: X-MOL 学术J. Radiat. Res. Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation
Journal of Radiation Research and Applied Sciences ( IF 1.7 ) Pub Date : 2020-03-25 , DOI: 10.1080/16878507.2020.1743480
Nabila Selim 1 , Heba Hamed Maghrawy 2 , Reham Fathy 2 , Marwa Gamal 2 , Hussein Abd El Kareem 2 , Kyle Bowman 3 , Mark Brehney 3 , Godfrey Kyazze 3 , Tajalli Keshavarz 3 , Ola Gomaa 2
Affiliation  

ABSTRACT

The aim of the present work was to increase bacterial adhesion on anode via inducing membrane modifications to enhance textile wastewater treatment in Microbial Fuel Cell (MFC). Real textile wastewater was used in mediator-less MFCs for bacterial enrichment. The enriched bacteria were pre-treated by exposure to 1 KGy gamma radiation and were tested in MFC setup. Bacterial cell membrane permeability and cell membrane charges were measured using noninvasive dielectric spectroscopy measurements. The results show that pre-treatment using gamma radiation resulted in biofilm formation and increased cell permeability and exopolysaccharide production; this was reflected in both MFC performance (average voltage 554.67 mV) and decolorization (96.42%) as compared to 392.77 mV and 60.76% decolorization for non-treated cells. At the end of MFC operation, cytotoxicity test was performed for treated wastewater using a dermal cell line, the results obtained show a decrease in toxicity from 24.8 to 0 (v/v%) when cells were exposed to gamma radiation. Fourier-transform infrared (FTIR) spectroscopy showed an increase in exopolysaccharides in bacterial consortium exposed to increasing doses of gamma radiation suggesting that gamma radiation increased exopolysaccharide production, providing transient media for electron transfer and contributing to accelerating MFC performance. Modification of bacterial membrane prior to MFC operation can be considered highly effective as a pre-treatment tool that accelerates MFC performance.



中文翻译:

修饰细菌细胞膜以加速使用微生物燃料电池对纺织废水的脱色:伽马射线的作用

摘要

本工作的目的是通过诱导膜改性来增强阳极上的细菌附着力,以增强微生物燃料电池(MFC)中的纺织品废水处理。实际的纺织废水用于无介质的MFC中,以富集细菌。富集的细菌通过暴露于1 KGyγ射线进行预处理,并在MFC中进行测试。细菌细胞膜通透性和细胞膜电荷使用无创电介质光谱法测量。结果表明,使用γ射线进行预处理可导致生物膜形成,并增加细胞通透性和胞外多糖的产生。与未处理电池的392.77 mV和60.76%的脱色相比,这在MFC性能(平均电压554.67 mV)和脱色(96.42%)上都得到了体现。在MFC操作结束时,使用真皮细胞系对处理过的废水进行了细胞毒性测试,获得的结果表明,当细胞暴露于伽玛射线时,毒性从24.8降低到0(v / v%)。傅里叶变换红外(FTIR)光谱显示,暴露于剂量增加的γ辐射下的细菌菌群中胞外多糖的含量增加,表明γ辐射增加了胞外多糖的产生,为电子转移提供了瞬态介质,并有助于加速MFC性能。在进行MFC操作之前,细菌膜的修饰可以作为提高MFC性能的预处理工具被认为是非常有效的。当细胞暴露于伽玛射线时为8至0(v / v%)。傅里叶变换红外(FTIR)光谱显示,暴露于剂量不断增加的伽玛射线的细菌聚生体中胞外多糖的含量增加,这表明伽玛射线增加了胞外多糖的产生,为电子转移提供了瞬态介质,并有助于加速MFC性能。在进行MFC操作之前,细菌膜的修饰可以作为提高MFC性能的预处理工具被认为是非常有效的。当细胞暴露于伽玛射线时为8至0(v / v%)。傅里叶变换红外(FTIR)光谱显示,暴露于剂量不断增加的伽玛射线的细菌聚生体中胞外多糖的含量增加,这表明伽玛射线增加了胞外多糖的产生,为电子转移提供了瞬态介质,并有助于加速MFC性能。在进行MFC操作之前,细菌膜的修饰可以作为提高MFC性能的预处理工具被认为是非常有效的。为电子转移提供瞬态介质,并有助于加速MFC性能。在进行MFC操作之前,细菌膜的修饰可以作为提高MFC性能的预处理工具被认为是非常有效的。为电子转移提供瞬态介质,并有助于加速MFC性能。在进行MFC操作之前,细菌膜的修饰可以作为提高MFC性能的预处理工具被认为是非常有效的。

更新日期:2020-04-20
down
wechat
bug