当前位置: X-MOL 学术Virtual Phys. Prototyp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrohydrodynamic printing of sub-microscale fibrous architectures with improved cell adhesion capacity
Virtual and Physical Prototyping ( IF 10.6 ) Pub Date : 2019-09-10 , DOI: 10.1080/17452759.2019.1662991
Bing Zhang 1, 2 , Jiankang He 1, 2 , Qi Lei 1, 2 , Dichen Li 1, 2
Affiliation  

A solution-based electrohydrodynamic (EHD) printing strategy was developed to fabricate sub-microscale biopolymeric fibres to mimic the tiny architectures of native extracellular matrix (ECM) for enhanced cellular performance. It was found that when the working voltage was significantly reduced to 500 V, sub-microscale fibres as well as user-specific patterns with an average fibre size of 193 ± 51 nm can be stably EHD printed. The presented process is applicable to biocompatible polycaprolactone (PCL) for the fabrication of water-stable sub-microscale fibrous architectures. The resultant sub-microscale fibres exhibited unique capability to enhance cellular adhesion, spreading and orientation in comparison with conventional microscale fibres fabricated by conventional melt-based EHD printing. The EHD-printed fibres can be precisely stacked to form multilayer sub-microscale structures. The proposed solution-based EHD printing process provides a promising strategy to fabricate sub-microscale biopolymeric architectures that could be further functionalised by the incorporation of bioactive components for enhanced tissue regeneration.



中文翻译:

具有改善的细胞粘附能力的亚微米级纤维结构的电流体动力学印刷

开发了一种基于解决方案的电液动力学(EHD)印刷策略,以制造亚微米级生物聚合物纤维,以模仿天然细胞外基质(ECM)的微小结构来增强细胞性能。发现当工作电压显着降低至500 V时,可以稳定地EHD印刷亚微米级纤维以及平均纤维尺寸为193±51 nm的用户特定图案。提出的过程适用于生物相容性聚己内酯(PCL),用于制造水稳定的亚微米级纤维结构。与通过常规的基于熔融的EHD印刷制造的常规的微尺度纤维相比,所得的亚微尺度的纤维表现出增强细胞粘附,扩散和取向的独特能力。EHD印刷的纤维可以精确堆叠以形成多层亚微米级结构。所提出的基于解决方案的EHD印刷工艺提供了一种有前途的策略来制造亚微米级生物聚合物体系结构,可以通过引入生物活性成分来进一步增强组织再生功能。

更新日期:2020-03-26
down
wechat
bug