当前位置: X-MOL 学术Int. J. Damage Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical and experimental study on effect of braiding angle on low-velocity transverse punch response of braided composite tube
International Journal of Damage Mechanics ( IF 4.2 ) Pub Date : 2019-10-14 , DOI: 10.1177/1056789519881488
Yeli Jin 1 , Zhenyu Wu 1 , Zhongxiang Pan 1 , Laihu Peng 1 , Xudong Hu 1
Affiliation  

In this study, the performance of braided composite tubes under low-velocity transverse impact loading at mid-span was investigated using both numerical and experimental methods. Three types of braided composite tubes with different braiding angles (30°, 45°, and 60°) were manufactured. The transverse punch behavior of the tubes was examined on a low-velocity imspact test bench. A meso-level finite element model of the composite tube was also established for identifying the damage initiation and development. The numerical results showed a good correlation with the experimental data. The mechanical response including force–time histories, force–displacement histories, and fracture morphologies was compared between three types of composite tubes for analyzing the influence of braiding angle on the impact response and failure mode. Although suffering from the low bending stiffness depends on fiber volume fraction at initial impact stage, the braided tube with 30° angle engaged more portion to resist impact loading in subsequent process and thus presented higher peak loading than the one with large angle. In addition, there are distinct different failure modes between composite tubes with various braiding angles. Shear yarn breakage underneath the punch was prone to occur in 30° sample because the braiding yarn was closer to the axial direction of tube. In contrast, the resin was deboned severely from the braiding yarn and then the braiding yarn exhibits plastic deformation in 60° sample due to the stress concentration caused by the large braiding angle.

中文翻译:

编织角度对编织复合管低速横向冲头响应影响的数值与试验研究

在这项研究中,使用数值和实验方法研究了编织复合管在中跨低速横向冲击载荷下的性能。制造了三种不同编织角度(30°、45°和60°)的编织复合管。在低速冲击试验台上检查管的横向冲压行为。还建立了复合管的细观级有限元模型,用于识别损伤的发生和发展。数值结果与实验数据显示出良好的相关性。比较了三种复合管之间的力学响应,包括力-时间历程、力-位移历程和断裂形态,以分析编织角度对冲击响应和失效模式的影响。虽然弯曲刚度低的问题取决于初始冲击阶段的纤维体积分数,但30°角的编织管在后续过程中接合了更多的部分以抵抗冲击载荷,因此比大角度的编织管呈现出更高的峰值载荷。此外,不同编织角度的复合管之间存在明显不同的失效模式。30°试样容易发生冲头下方的剪切断纱,因为编织纱更靠近管子的轴向。相比之下,树脂从编织纱线上严重脱骨,然后编织纱线在 60° 样品中由于大编织角度引起的应力集中而出现塑性变形。30°角的编织管接合更多的部分以抵抗后续过程中的冲击载荷,因此比大角度的编织管具有更高的峰值载荷。此外,不同编织角度的复合管之间存在明显不同的失效模式。30°试样容易发生冲头下方的剪切断纱,因为编织纱更靠近管子的轴向。相比之下,树脂从编织纱线上严重脱骨,然后编织纱线在 60° 样品中由于大编织角度引起的应力集中而出现塑性变形。30°角的编织管接合更多的部分以抵抗后续过程中的冲击载荷,因此比大角度的编织管具有更高的峰值载荷。此外,不同编织角度的复合管之间存在明显不同的失效模式。30°试样容易发生冲头下方的剪切断纱,因为编织纱更靠近管子的轴向。相比之下,树脂从编织纱线上严重脱骨,然后编织纱线在 60° 样品中由于大编织角度引起的应力集中而出现塑性变形。不同编织角度的复合管之间存在明显不同的失效模式。30°试样容易发生冲头下方的剪切断纱,因为编织纱更靠近管子的轴向。相比之下,树脂从编织纱线上严重脱骨,然后编织纱线在 60° 样品中由于大编织角度引起的应力集中而出现塑性变形。不同编织角度的复合管之间存在明显不同的失效模式。30°试样容易发生冲头下方的剪切断纱,因为编织纱更靠近管子的轴向。相比之下,树脂从编织纱线上严重脱骨,然后编织纱线在 60° 样品中由于大编织角度引起的应力集中而出现塑性变形。
更新日期:2019-10-14
down
wechat
bug