当前位置: X-MOL 学术Virus Evol. › 论文详情
Detection of H3N8 influenza A virus with multiple mammalian-adaptive mutations in a rescued Grey seal (Halichoerus grypus) pup
Virus Evolution ( IF 5.549 ) Pub Date : 2020-03-18 , DOI: 10.1093/ve/veaa016
Divya Venkatesh; Carlo Bianco; Alejandro Núñez; Rachael Collins; Darryl Thorpe; Scott M Reid; Sharon M Brookes; Steve Essen; Natalie McGinn; James Seekings; Jayne Cooper; Ian H Brown; Nicola S Lewis

Avian influenza A viruses (IAVs) in different species of seals display a spectrum of pathogenicity, from sub-clinical infection to mass mortality events. Here we present an investigation of avian IAV infection in a 3- to 4-month-old Grey seal (Halichoerus grypus) pup, rescued from St Michael’s Mount, Cornwall in 2017. The pup underwent medical treatment but died after two weeks; post-mortem examination and histology indicated sepsis as the cause of death. IAV NP antigen was detected by immunohistochemistry in the nasal mucosa, and sensitive real-time reverse transcription polymerase chain reaction assays detected trace amounts of viral RNA within the lower respiratory tract, suggesting that the infection may have been cleared naturally. IAV prevalence among Grey seals may therefore be underestimated. Moreover, contact with humans during the rescue raised concerns about potential zoonotic risk. Nucleotide sequencing revealed the virus to be of subtype H3N8. Combining a GISAID database BLAST search and time-scaled phylogenetic analyses, we inferred that the seal virus originated from an unsampled, locally circulating (in Northern Europe) viruses, likely from wild Anseriformes. From examining the protein alignments, we found several residue changes in the seal virus that did not occur in the bird viruses, including D701N in the PB2 segment, a rare mutation, and a hallmark of mammalian adaptation of bird viruses. IAVs of H3N8 subtype have been noted for their particular ability to cross the species barrier and cause productive infections, including historical records suggesting that they may have caused the 1889 pandemic. Therefore, infections such as the one we report here may be of interest to pandemic surveillance and risk and help us better understand the determinants and drivers of mammalian adaptation in influenza.
更新日期:2020-04-17

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug