当前位置: X-MOL 学术Miner. Deposita › 论文详情
The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile
Mineralium Deposita ( IF 3.397 ) Pub Date : 2020-03-09 , DOI: 10.1007/s00126-020-00959-9
Fernando Tornos, John M. Hanchar, Rodrigo Munizaga, Francisco Velasco, Carmen Galindo

Abstract The Mesozoic magnetite-(apatite) deposits of the Coastal Cordillera of Chile are interpreted as the product of the crystallization of oxidized iron-rich melts and subsequent hydrothermal alteration produced by related magmatic-hydrothermal systems. These deposits form a regional-scale mineral system controlled by the Atacama Fault System and where the mineralization spans more than 10 km in vertical extent. Individual sub-vertical bodies of massive magnetite coexist with and evolve vertically into pegmatite-, breccia-, and vein-like apatite-actinolite-magnetite/ilmenite rock. The mineralization is always hosted by a hydrothermal aureole of alkali-calcic-iron alteration that includes stockwork-like to disseminated mineralization. The deposits cluster in two groups. Those located in the northern part are mostly vein-like, and are hosted by Jurassic diorite. They have 87Sr/86Sri and εNdi values of 0.7042–0.7062 and + 5.1 to + 7.2, respectively. The southern group includes shallowly emplaced ore lenses in broadly coeval (sub-)volcanic intermediate rocks. They show similar 87Sr/86Sri signatures (0.7033–0.7065, with one value up to 0.7097) and more variable εNdi values (+ 3.9 to + 8.6). As a whole, the Sr-Nd data do not seem to be influenced by the type of crust intruded, but rather, likely track the mixing between a MORB-like reservoir and another source with elevated 87Sr/86Sri (≥ 0.706). The genetic model proposed involves the dehydration of variably altered subducted oceanic crust, the interaction of fluids released from the mantle wedge, the separation of iron-rich melts, and their ascent along transcrustal faults. The broadly coeval intermediate host rocks show a lesser contribution of subducted crust, something that perhaps excludes a genetic relationship between these rocks and the magnetite-(apatite) mineralization.
更新日期:2020-03-30

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug