当前位置: X-MOL 学术Fire Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of Thermal Runaway Propagation in a Pouch Cell Stack
Fire Technology ( IF 3.4 ) Pub Date : 2020-03-13 , DOI: 10.1007/s10694-020-00970-6
Serhat Bilyaz , Kevin C. Marr , Ofodike A. Ezekoye

Characterizing propagation of a thermal runaway hazard in cell arrays and modules is critical to understanding fire hazards in energy storage systems. In this paper, the thermal runaway propagation of a pouch cell array has been examined by developing a 1D finite difference model. The results are compared with experimental data. First, the thermal runaway reactions found in the literature are reviewed. Using the insight of the literature review and premixed flame propagation theory, a global first order Arrhenius type reaction is characterized. While applying the multiple kinetic reactions, an “onset temperature” of the combustion reactions has been determined by performing an induction time analysis on ethylene. The propagation speeds are predicted with a 1D finite difference model by using both multi-reaction kinetics and one step reduced-order kinetics. These results are in a good agreement with experiments for both 10 Ah and 5 Ah cell arrays.

中文翻译:

软包电池组中热失控传播的建模

表征电池阵列和模块中热失控危害的传播对于了解储能系统中的火灾危害至关重要。在本文中,通过开发一维有限差分模型来研究软包电池阵列的热失控传播。结果与实验数据进行了比较。首先,回顾了文献中发现的热失控反应。使用文献综述和预混火焰传播理论的见解,表征了全局一阶阿伦尼乌斯型反应。在应用多个动力学反应时,燃烧反应的“起始温度”已通过对乙烯进行诱导时间分析来确定。传播速度是通过使用多反应动力学和一步降阶动力学的一维有限差分模型来预测的。这些结果与 10 Ah 和 5 Ah 单元阵列的实验非常吻合。
更新日期:2020-03-13
down
wechat
bug