当前位置: X-MOL 学术Eng. Anal. Bound. Elem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Particle transport velocity correction for the finite volume particle method for multi-resolution particle distributions and exact geometric boundaries
Engineering Analysis With Boundary Elements ( IF 3.3 ) Pub Date : 2020-03-05 , DOI: 10.1016/j.enganabound.2020.02.003
Maryrose McLoone , Nathan J. Quinlan

The finite volume particle method (FVPM) is a meshless computational fluid dynamics (CFD) method, where the fluid domain is represented by a set of overlapping particles, and boundaries are defined as exact geometries. Particle-based CFD methods, such as smoothed particle hydrodynamics (SPH) and FVPM, are susceptible to non-uniform particle distributions, which result in errors. Particle regularisation techniques, based on displacement or particle transport velocity, improve particle distributions. Here, improvements are made to the previous particle regularisation methods in SPH and FVPM. The method presented here takes advantage of the arbitrary Lagrangian-Eulerian nature of FVPM and applies a small correction to the particle transport velocity. It incorporates a novel symmetric formulation to maintain specified spatially varying resolution. Difficulties associated with the FVPM definition of the geometric boundaries are overcome, in that the correction method automatically adjusts to varying geometry segment size, without requiring fictitious boundary particles, as in SPH. The method is evaluated in a static multi-resolution test, cylinder in flow, and dambreak flow. Results show that the method yields improved particle distribution with few voids, with improved wall pressure results in the dambreak. The method maintains multi-resolution and adaptive particle distributions and is insensitive to the resolution of boundary geometry.



中文翻译:

用于多分辨率粒子分布和精确几何边界的有限体积粒子方法的粒子传输速度校正

有限体积粒子法(FVPM)是无网格计算流体动力学(CFD)方法,其中流体域由一组重叠的粒子表示,边界定义为精确的几何形状。基于粒子的CFD方法(例如平滑粒子流体动力学(SPH)和FVPM)容易受到非均匀粒子分布的影响,从而导致错误。基于位移或粒子传输速度的粒子正则化技术可改善粒子分布。在这里,对SPH和FVPM中以前的粒子正则化方法进行了改进。此处介绍的方法利用了FVPM的任意拉格朗日-欧拉性质,并对粒子传输速度进行了较小的校正。它采用了新颖的对称设计,可保持指定的空间变化分辨率。克服了与FVPM定义几何边界有关的难题,因为该校正方法可以自动调整以适应变化的几何段大小,而无需像SPH中那样使用虚拟边界粒子。该方法在静态多分辨率测试,圆柱体流入和溃坝流量中进行评估。结果表明,该方法产生的改进的颗粒分布具有很少的空隙,而改进的壁压导致了溃坝。该方法保持多分辨率和自适应粒子分布,并且对边界几何的分辨率不敏感。该方法在静态多分辨率测试,圆柱体流入和溃坝流量中进行评估。结果表明,该方法产生的改进的颗粒分布具有较少的空隙,而改进的壁压导致了溃坝。该方法保持多分辨率和自适应粒子分布,并且对边界几何的分辨率不敏感。该方法在静态多分辨率测试,圆柱体流入和溃坝流量中进行评估。结果表明,该方法产生的改进的颗粒分布具有较少的空隙,而改进的壁压导致了溃坝。该方法保持多分辨率和自适应粒子分布,并且对边界几何的分辨率不敏感。

更新日期:2020-03-05
down
wechat
bug