当前位置: X-MOL 学术Transp. Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physical modeling of train-induced mud pumping in substructure beneath ballastless slab track
Transportation Geotechnics ( IF 5.3 ) Pub Date : 2020-02-06 , DOI: 10.1016/j.trgeo.2020.100332
Tengfei Wang , Qiang Luo , Mengshi Liu , Liyang Wang , Wei Qi

This paper identifies the fundamental driving factors for the mobilization of mud pumping in railway substructure beneath ballastless slab track. Physical model tests on a compacted gravel layer overlying a permeable layer were performed under different conditions in terms of fines content, moisture (i.e., unsaturated, saturated with and without surface ponding), load patterns, and slit width between load plate and gravel surface. The loading unit primarily consists of a load plate and electric actuator for reproducing the train induced loads under normal operation. The model test system was equipped with various devices and sensors allowing the measurements of vertical displacement, stress, moisture content, and hydraulic conductivity. Visual observations were also made to evaluate the extent of mobilized mud pumping, including the particles migration on the gravel surface. It was shown that the permeability of compacted gravelly soils decreases rapidly with the addition of fines. Both the dynamic loading and hydraulic condition of the gravel layer are essential in the mobilization of mud pumping, and the slit caused by the detachment of concrete base from subgrade surface is recognized as the most fundamental factor for this phenomenon. The substructure becomes more susceptible to mud pumping under dynamic loading when slit width and fines content increase and ponding on the surface of gravel layer is available. The repeated erosion and scouring of subgrade surface (compacted gravel layer) driven by dynamic water pressure leads to a fully established mud pumping for ballastless track given enough load cycles.



中文翻译:

无ball板式轨道下方子结构中火车诱发泥浆泵送的物理模型

本文确定了无ball板式轨道下方铁路下部结构中动员泥浆泵送的基本驱动因素。在细粉含量,水分(即不饱和,饱和且有和没有表面堆积),载荷模式以及载荷板与砾石表面之间的缝隙宽度方面,在不同条件下对覆盖在可渗透层上的压实砾石层进行了物理模型测试。装载单元主要由一块压板和一个电动执行器组成,用于在正常运行下再现列车感应的载荷。模型测试系统配备了各种设备和传感器,可以测量垂直位移,应力,水分含量和水力传导率。还进行了目视观察以评估动员泥浆泵的程度,包括颗粒在砾石表面上的迁移。结果表明,压实的砾石土的渗透性随添加细料而迅速降低。砾石层的动载荷和水力条件对于动员泥浆泵来说都是必不可少的,并且由混凝土基础从路基表面脱离引起的裂缝被认为是造成这种现象的最根本因素。当狭缝宽度和细粉含量增加并且可以在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)的反复腐蚀和冲刷导致无established轨道的泥浆泵送得以完全建立。结果表明,压实的砾石土的渗透性随添加细料而迅速降低。砾石层的动载荷和水力条件对于动员泥浆泵来说都是必不可少的,并且由混凝土基础从路基表面脱离引起的裂缝被认为是造成这种现象的最根本因素。当狭缝宽度和细粉含量增加并且可在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)反复受到侵蚀和冲刷,从而导致无ball轨道的泥浆泵送得以完全建立。结果表明,压实的砾石土的渗透性随添加细料而迅速降低。砾石层的动载荷和水力条件对于动员泥浆泵来说都是必不可少的,并且由混凝土基础从路基表面脱离引起的裂缝被认为是造成这种现象的最根本因素。当狭缝宽度和细粉含量增加并且可在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)反复受到侵蚀和冲刷,从而导致无ball轨道的泥浆泵送得以完全建立。砾石层的动态载荷和水力条件对于动员泥浆泵来说都是必不可少的,并且由混凝土基础从路基表面脱离引起的裂缝被认为是造成这种现象的最根本因素。当狭缝宽度和细粉含量增加并且可在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)反复受到侵蚀和冲刷,从而导致无ball轨道的泥浆泵送得以完全建立。砾石层的动载荷和水力条件对于动员泥浆泵来说都是必不可少的,并且由混凝土基础从路基表面脱离引起的裂缝被认为是造成这种现象的最根本因素。当狭缝宽度和细粉含量增加并且可在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)反复受到侵蚀和冲刷,从而导致无ball轨道的泥浆泵送得以完全建立。这种现象的最根本原因是由混凝土基础从路基表面脱离引起的裂缝。当狭缝宽度和细粉含量增加并且可在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)反复受到侵蚀和冲刷,从而导致无ball轨道的泥浆泵送得以完全建立。这种现象的最根本原因是由混凝土基础从路基表面脱离引起的裂缝。当狭缝宽度和细粉含量增加并且可在砾石层表面积聚时,在动态载荷下,下部结构更容易受到泥浆的泵送。在给定足够的载荷循环的情况下,由动态水压驱动的路基表面(密实的砾石层)反复受到侵蚀和冲刷,从而导致无ball轨道的泥浆泵送得以完全建立。

更新日期:2020-02-06
down
wechat
bug