当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoluminescence Mapping and Time-Domain Thermo-Photoluminescence for Rapid Imaging and Measurement of Thermal Conductivity of Boron Arsenide
Materials Today Physics ( IF 11.5 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.mtphys.2020.100194
S. Yue , G.A. Gamage , M. Mohebinia , D. Mayerich , V. Talari , Y. Deng , F. Tian , S.-Y. Dai , H. Sun , V.G. Hadjiev , W. Zhang , G. Feng , J. Hu , D. Liu , Z. Wang , Z. Ren , J. Bao

Cubic boron arsenide (BAs) is attracting greater attention due to the recent experimental demonstration of ultrahigh thermal conductivity \k{appa} above 1000 W/mK. However, its bandgap has not been settled and a simple yet effective method to probe its crystal quality is missing. Furthermore, traditional \k{appa} measurement methods are destructive and time consuming, thus they cannot meet the urgent demand for fast screening of high \k{appa} materials. After we experimentally established 1.82 eV as the indirect bandgap of BAs and observed room-temperature band-edge photoluminescence, we developed two new optical techniques that can provide rapid and non-destructive characterization of \k{appa} with little sample preparation: photoluminescence mapping (PL-mapping) and time-domain thermo-photoluminescence (TDTP). PL-mapping provides nearly real-time image of crystal quality and \k{appa} over mm-sized crystal surfaces; while TDTP allows us to pick up any spot on the sample surface and measure its \k{appa} using nanosecond laser pulses. These new techniques reveal that the apparent single crystals are not only non-uniform in \k{appa}, but also are made of domains of very distinct \k{appa}. Because PL-mapping and TDTP are based on the band-edge PL and its dependence on temperature, they can be applied to other semiconductors, thus paving the way for rapid identification and development of high-\k{appa} semiconducting materials.

中文翻译:

用于砷化硼热导率快速成像和测量的光致发光映射和时域热致发光

由于最近的实验证明超高热导率 \k{appa} 超过 1000 W/mK,立方砷化硼 (BAs) 引起了更大的关注。然而,它的带隙尚未确定,并且缺少一种简单而有效的方法来探测其晶体质量。此外,传统的\k{appa}测量方法具有破坏性和耗时性,无法满足快速筛选高\k{appa}材料的迫切需求。在我们通过实验建立 1.82 eV 作为 BAs 的间接带隙并观察到室温带边光致发光之后,我们开发了两种新的光学技术,可以在几乎没有样品制备的情况下提供 \k{appa} 的快速和非破坏性表征:光致发光映射(PL 映射)和时域热光致发光 (TDTP)。PL 映射在毫米大小的晶体表面上提供了晶体质量和 \k{appa} 的近乎实时的图像;而 TDTP 允许我们拾取样品表面上的任何点并使用纳秒激光脉冲测量其 \k{appa}。这些新技术表明,表观单晶不仅在 \k{appa} 中不均匀,而且由非常不同的 \k{appa} 域组成。由于 PL-mapping 和 TDTP 基于带边 PL 及其对温度的依赖性,因此它们可以应用于其他半导体,从而为高\k{appa} 半导体材料的快速识别和开发铺平了道路。这些新技术表明,表观单晶不仅在 \k{appa} 中不均匀,而且由非常不同的 \k{appa} 域组成。由于 PL-mapping 和 TDTP 基于带边 PL 及其对温度的依赖性,因此它们可以应用于其他半导体,从而为高\k{appa} 半导体材料的快速识别和开发铺平了道路。这些新技术表明,表观单晶不仅在 \k{appa} 中不均匀,而且由非常不同的 \k{appa} 域组成。由于 PL-mapping 和 TDTP 基于带边 PL 及其对温度的依赖性,因此它们可以应用于其他半导体,从而为高\k{appa} 半导体材料的快速识别和开发铺平了道路。
更新日期:2020-06-01
down
wechat
bug