当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic effect of 3D current collector structure and Ni inactive matrix on the electrochemical performances of Sn-based anodes for lithium-ion batteries
Materials Today Energy ( IF 9.3 ) Pub Date : 2020-03-02 , DOI: 10.1016/j.mtener.2020.100397
Arailym Nurpeissova , Akylbek Adi , Assylzat Aishova , Aliya Mukanova , Sung-Soo Kim , Zhumabay Bakenov

A three-dimensional (3D) architecture design of the battery electrodes is believed to enhance the energy and power densities of conventional lithium-ion batteries. In this paper, we report a unique 3D architecture anode fabricated by electrodeposition of ultrathin Ni3Sn4 intermetallic alloy onto a commercially available nickel foam current collector from an aqueous electrolyte. Along with 3D nickel foam, planar (2D) copper current collector was also electrodeposited at the same deposition conditions to compare the effect of architecture. The X-ray diffraction results obtained from three-dimensional and planar anode electrodes indicated that the main phase of electrodeposited alloys for both substrates was Ni3Sn4. The designed three-dimensional electrode demonstrated a high discharge capacity of 843,75 mAh g−1 during initial cycles and an improved cycle performance over 100 cycles in contrast with the same alloy electrodeposited onto planar substrate. The high surface area of the electrode and short Li+-ions diffusion paths along with suppression of volume expansion provided by the proposed 3D structure and Ni inactive matrix play a key role in improving the performance of the electrode.



中文翻译:

3D集电器结构和Ni惰性基质对锂离子电池Sn基阳极电化学性能的协同效应

电池电极的三维(3D)结构设计被认为可以提高常规锂离子电池的能量和功率密度。在本文中,我们报告了一种独特的3D结构阳极,该阳极是通过将超薄Ni 3 Sn 4金属间合金电沉积到水电解质上的市售镍泡沫集电器上而制成的。除了3D泡沫镍外,还以相同的沉积条件对平面(2D)铜集流体进行了电沉积,以比较结构的影响。从三维和平面阳极电极获得的X射线衍射结果表明,两种衬底的电沉积合金的主要相均为Ni 3 Sn 4。。设计的三维电极在初始循环中表现出843.75 mAh g -1的高放电容量,与电沉积到平面基板上的相同合金相比,在100次循环中具有改善的循环性能。电极的高表面积和短的Li +离子扩散路径,以及所提出的3D结构和Ni惰性基质提供的体积膨胀抑制,在改善电极性能方面起着关键作用。

更新日期:2020-03-02
down
wechat
bug