当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics
arXiv - CS - Systems and Control Pub Date : 2016-02-14 , DOI: arxiv-1602.04450
Felix Berkenkamp; Andreas Krause; Angela P. Schoellig

Robotic algorithms typically depend on various parameters, the choice of which significantly affects the robot's performance. While an initial guess for the parameters may be obtained from dynamic models of the robot, parameters are usually tuned manually on the real system to achieve the best performance. Optimization algorithms, such as Bayesian optimization, have been used to automate this process. However, these methods may evaluate unsafe parameters during the optimization process that lead to safety-critical system failures. Recently, a safe Bayesian optimization algorithm, called SafeOpt, has been developed, which guarantees that the performance of the system never falls below a critical value; that is, safety is defined based on the performance function. However, coupling performance and safety is often not desirable in robotics. For example, high-gain controllers might achieve low average tracking error (performance), but can overshoot and violate input constraints. In this paper, we present a generalized algorithm that allows for multiple safety constraints separate from the objective. Given an initial set of safe parameters, the algorithm maximizes performance but only evaluates parameters that satisfy safety for all constraints with high probability. To this end, it carefully explores the parameter space by exploiting regularity assumptions in terms of a Gaussian process prior. Moreover, we show how context variables can be used to safely transfer knowledge to new situations and tasks. We provide a theoretical analysis and demonstrate that the proposed algorithm enables fast, automatic, and safe optimization of tuning parameters in experiments on a quadrotor vehicle.
更新日期:2020-04-08

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug