当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Curved patch mapping and tracking for irregular terrain modeling: Application to bipedal robot foot placement
arXiv - CS - Robotics Pub Date : 2020-04-05 , DOI: arxiv-2004.03405
Dimitrios Kanoulas; Nikos G. Tsagarakis; Marsette Vona

Legged robots need to make contact with irregular surfaces, when operating in unstructured natural terrains. Representing and perceiving these areas to reason about potential contact between a robot and its surrounding environment, is still largely an open problem. This paper introduces a new framework to model and map local rough terrain surfaces, for tasks such as bipedal robot foot placement. The system operates in real-time, on data from an RGB-D and an IMU sensor. We introduce a set of parametrized patch models and an algorithm to fit them in the environment. Potential contacts are identified as bounded curved patches of approximately the same size as the robot's foot sole. This includes sparse seed point sampling, point cloud neighborhood search, and patch fitting and validation. We also present a mapping and tracking system, where patches are maintained in a local spatial map around the robot as it moves. A bio-inspired sampling algorithm is introduced for finding salient contacts. We include a dense volumetric fusion layer for spatiotemporally tracking, using multiple depth data to reconstruct a local point cloud. We present experimental results on a mini-biped robot that performs foot placements on rocks, implementing a 3D foothold perception system, that uses the developed patch mapping and tracking framework.
更新日期:2020-04-08

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug