当前位置: X-MOL 学术arXiv.cs.CV › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A Comparative Study
arXiv - CS - Computer Vision and Pattern Recognition Pub Date : 2020-04-07 , DOI: arxiv-2004.03271
Christoph Baur, Stefan Denner, Benedikt Wiestler, Shadi Albarqouni and Nassir Navab

Deep unsupervised representation learning has recently led to new approaches in the field of Unsupervised Anomaly Detection (UAD) in brain MRI. The main principle behind these works is to learn a model of normal anatomy by learning to compress and recover healthy data. This allows to spot abnormal structures from erroneous recoveries of compressed, potentially anomalous samples. The concept is of great interest to the medical image analysis community as it i) relieves from the need of vast amounts of manually segmented training data---a necessity for and pitfall of current supervised Deep Learning---and ii) theoretically allows to detect arbitrary, even rare pathologies which supervised approaches might fail to find. To date, the experimental design of most works hinders a valid comparison, because i) they are evaluated against different datasets and different pathologies, ii) use different image resolutions and iii) different model architectures with varying complexity. The intent of this work is to establish comparability among recent methods by utilizing a single architecture, a single resolution and the same dataset(s). Besides providing a ranking of the methods, we also try to answer questions like i) how many healthy training subjects are needed to model normality and ii) if the reviewed approaches are also sensitive to domain shift. Further, we identify open challenges and provide suggestions for future community efforts and research directions.

中文翻译:

用于脑 MR 图像中无监督异常分割的自动编码器:一项比较研究

深度无监督表示学习最近导致了脑 MRI 无监督异常检测 (UAD) 领域的新方法。这些工作背后的主要原理是通过学习压缩和恢复健康数据来学习正常解剖结构的模型。这允许从压缩的潜在异常样本的错误回收中发现异常结构。这个概念对医学图像分析社区非常感兴趣,因为它 i) 免除了对大量手动分割训练数据的需求——当前监督深度学习的必要性和陷阱——并且 ii) 理论上允许检测任意的,甚至是监督方法可能无法发现的罕见病状。迄今为止,大多数作品的实验设计阻碍了有效的比较,因为 i) 它们是针对不同的数据集和不同的病理进行评估的,ii) 使用不同的图像分辨率和 iii) 具有不同复杂性的不同模型架构。这项工作的目的是通过利用单一架构、单一分辨率和相同的数据集在最近的方法之间建立可比性。除了提供方法的排名之外,我们还尝试回答以下问题:i)需要多少健康的训练对象来建模正态性以及 ii)所审查的方法是否也对域转移敏感。此外,我们确定公开的挑战,并为未来的社区努力和研究方向提供建议。这项工作的目的是通过利用单一架构、单一分辨率和相同的数据集在最近的方法之间建立可比性。除了提供方法的排名之外,我们还尝试回答以下问题:i)需要多少健康的训练对象来建模正态性以及 ii)所审查的方法是否也对域转移敏感。此外,我们确定公开的挑战,并为未来的社区努力和研究方向提供建议。这项工作的目的是通过利用单一架构、单一分辨率和相同的数据集在最近的方法之间建立可比性。除了提供方法的排名之外,我们还尝试回答以下问题:i)需要多少健康的训练对象来建模正态性以及 ii)所审查的方法是否也对域转移敏感。此外,我们确定公开的挑战,并为未来的社区努力和研究方向提供建议。
更新日期:2020-04-09
down
wechat
bug