当前位置: X-MOL 学术Miner. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bubble−particle interactions with hydrodynamics, XDLVO theory, and surface roughness for flotation in an agitated tank using CFD simulations
Minerals Engineering ( IF 4.8 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.mineng.2020.106368
Allan Gomez-Flores , Stephen Kayombo Solongo , Graeme W. Heyes , Sadia Ilyas , Hyunjung Kim

Abstract The modeling of flotation in an agitated tank can be conducted by assuming the average turbulence or using more realistic turbulence at each point of the tank through computational fluid dynamics (CFD). Turbulence is used to calculate the probabilities of the collision, attachment, and stability of a particle with a bubble to ultimately predict the particle recovery. The extended Derjaguin−Landau−Verwey−Overbeek (XDLVO) theory helps to interpret the particle − bubble interaction and can be included in the calculation of the probabilities. Our study presents, for the first time, a theoretical work of flotation modeling in an agitated tank using CFD and the XDLVO theory with particle surface roughness (SR). In detail, we compared three approaches: one without XDLVO, one with XDLVO, and another with XDLVO including SR. We found that the approach without XDLVO predicts that the attachment probability decreases as the particle−bubble velocities increase, whereas the one with XDLVO predicts that it increases. The approach without XDLVO predicts higher particle stability against turbulence than the one with XDLVO. The modeling without XDLVO had fewer changes in particle fraction remaining in the tank as the contact angle increased than that in the one with XDLVO. Finally, the SR had a marked influence only on the attachment probability and, ultimately, did not significantly affect the particle fraction remaining in the tank.

中文翻译:

气泡-粒子与流体动力学、XDLVO 理论和使用 CFD 模拟在搅拌罐中浮选的表面粗糙度的相互作用

摘要 搅拌罐中的浮选建模可以通过假设平均湍流或通过计算流体动力学 (CFD) 在罐的每个点使用更真实的湍流来进行。湍流用于计算粒子与气泡的碰撞、附着和稳定性的概率,以最终预测粒子恢复。扩展的 Derjaguin-Landau-Verwey-Overbeek (XDLVO) 理论有助于解释粒子 - 气泡相互作用,并可包含在概率计算中。我们的研究首次提出了使用 CFD 和具有颗粒表面粗糙度 (SR) 的 XDLVO 理论在搅拌罐中进行浮选建模的理论工作。详细地,我们比较了三种方法:一种没有 XDLVO,一种有 XDLVO,另一种有 XDLVO,包括 SR。我们发现,没有 XDLVO 的方法预测附着概率随着粒子气泡速度的增加而降低,而使用 XDLVO 的方法预测它会增加。与使用 XDLVO 的方法相比,不使用 XDLVO 的方法预测了更高的粒子对湍流的稳定性。当接触角增加时,没有 XDLVO 的模型比有 XDLVO 的模型在罐中剩余的颗粒分数变化更少。最后,SR 仅对附着概率有显着影响,最终不会显着影响罐中剩余的颗粒分数。与使用 XDLVO 的方法相比,不使用 XDLVO 的方法预测了更高的粒子对湍流的稳定性。当接触角增加时,没有 XDLVO 的模型比有 XDLVO 的模型在罐中剩余的颗粒分数变化更少。最后,SR 仅对附着概率有显着影响,最终不会显着影响罐中剩余的颗粒分数。与使用 XDLVO 的方法相比,不使用 XDLVO 的方法预测了更高的粒子对湍流的稳定性。当接触角增加时,没有 XDLVO 的模型比有 XDLVO 的模型在罐中剩余的颗粒分数变化更少。最后,SR 仅对附着概率有显着影响,最终不会显着影响罐中剩余的颗粒分数。
更新日期:2020-06-01
down
wechat
bug