当前位置: X-MOL 学术Neural Comput. & Applic. › 论文详情
VNE strategy based on chaos hybrid flower pollination algorithm considering multi-criteria decision making
Neural Computing and Applications ( IF 4.664 ) Pub Date : 2020-04-04 , DOI: 10.1007/s00521-020-04827-5
Peiying Zhang, Fanglin Liu, Gagangeet Singh Aujla, Sahil Vashisht

Abstract With the development of science and technology and the need for multi-criteria decision making (MCDM), the optimization problem to be solved becomes extremely complex. The theoretically accurate and optimal solutions are often difficult to obtain. Therefore, meta-heuristic algorithms based on multi-point search have received extensive attention. The flower pollination algorithm (FPA) is a new swarm intelligence meta-heuristic algorithm, which can effectively control the balance between global search and local search through a handover probability, and gradually attracts the attention of researchers. However, the algorithm still has problems that are common to optimization algorithms. For example, the global search operation guided by the optimal solution is easy to lead the algorithm into local optimum, and the vector-guided search process is not suitable for solving some problems in discrete space. Moreover, the algorithm does not consider dynamic multi-criteria decision problems well. Aiming at these problems, the design strategy of hybrid flower pollination algorithm for virtual network embedding problem is discussed. Combining the advantages of the genetic algorithm and FPA, the algorithm is optimized for the characteristics of discrete optimization problems. The cross-operation is used to replace the cross-pollination operation to complete the global search and replace the mutation operation with self-pollination operation to enhance the ability of local search. Moreover, a life cycle mechanism is introduced as a complement to the traditional fitness-based selection strategy to avoid premature convergence. A chaos optimization strategy is introduced to replace the random sequence-guided crossover process to strengthen the global search capability and reduce the probability of producing invalid individuals. In addition, a two-layer BP neural network is introduced to replace the traditional objective function to strengthen the dynamic MCDM ability. Simulation results show that the proposed method has good performance in link load balancing, revenue–cost ratio, VN requests acceptance ratio, mapping average quotation, average time delay, average packet loss rate, and the average running time of the algorithm.
更新日期:2020-04-16

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug