当前位置: X-MOL 学术Appl. Microbiol. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulation of filamentation by bacteria and its impact on the productivity of compounds in biotechnological processes.
Applied Microbiology and Biotechnology ( IF 5 ) Pub Date : 2020-04-03 , DOI: 10.1007/s00253-020-10590-3
Maria Giovanna Rizzo 1 , Laura Maria De Plano 1 , Domenico Franco 1
Affiliation  

The bacteria wall fulfills important physiological functions at the cell, depending on its composition and organization. Many researches focused their studies in understanding the change of its properties not only in strength and permeability, but also in morphological plasticity due to both chemical and physical stresses. In particular, filamentation morphology is a cryptic phenomenon, with involve for great variety of bacteria, which allow them to acquire adaptive benefits. This phenotypic alteration consists of an alteration or lack of cell septation during the cell growth, as consequence of DNA damage or development of stress, such as nutritional factors, antibiotic resistance, low temperature, non-availability of oxygen, high osmolarity, and antimicrobial agents. These cells result in modification of elongation 10-50 times, thickness, chemical composition, and extent of cross-linking of the cell wall polymers than normal-shaped cells. Moreover, the advancement in the morphology engineering permitted the manipulation of the genes encoding the proteins belonging to the plasma membrane or cytoplasm, to have the control over the bacterial shapes and of the its cytoplasmatic environment. In biotechnology application, the intracellular space is primary used for a greater accumulation of secondary products, such as polyhydroxyalkanoates (PHAs). This review provides an insight into environmental induction of filamentation morphology and its use in biotechnological process. KEY POINTS: • Environmental stresses inducing filamentation morphology • Morphology engineering in biotechnological processes • Increase of polyhydroxyalkanoates (PHAs) accumulation.

中文翻译:

细菌对丝状化的调节及其对生物技术过程中化合物生产率的影响。

细菌壁在细胞中履行重要的生理功能,具体取决于其组成和组织。许多研究集中于了解其性质的变化,不仅是强度和渗透性的变化,还包括由于化学和物理应力而引起的形态可塑性的变化。特别地,丝状形态是一种隐秘现象,涉及多种细菌,这使它们获得了适应性益处。这种表型改变包括细胞生长期间细胞分隔的改变或缺乏,这是DNA损伤或压力发展的结果,例如营养因素,抗生素抗性,低温,无氧,高渗透压和抗微生物剂。这些单元会导致伸长率变化10-50倍,厚度 化学组成,以及细胞壁聚合物的交联程度比正常形状的细胞大。此外,形态工程学的进步允许对编码属于质膜或细胞质的蛋白质的基因进行操纵,以控制细菌的形状及其细胞质环境。在生物技术应用中,细胞内空间主要用于更大程度地积累次级产品,例如聚羟基链烷酸酯(PHA)。这篇综述提供了对丝状形态的环境诱导及其在生物技术过程中的应用的真知灼见。要点:•引起丝状形态的环境压力•生物技术过程中的形态工程•聚羟基链烷酸酯(PHAs)积累的增加。和正常形状的细胞相比,细胞壁聚合物的交联程度和程度。此外,形态工程学的进步允许对编码属于质膜或细胞质的蛋白质的基因进行操纵,以控制细菌的形状及其细胞质环境。在生物技术应用中,细胞内空间主要用于更大程度地积累次级产品,例如聚羟基链烷酸酯(PHA)。这篇综述提供了对丝状形态的环境诱导及其在生物技术过程中的应用的真知灼见。要点:•引起丝状形态的环境压力•生物技术过程中的形态工程•聚羟基链烷酸酯(PHAs)积累的增加。和正常形状的细胞相比,细胞壁聚合物的交联程度和程度。此外,形态工程学的进步允许对编码属于质膜或细胞质的蛋白质的基因进行操纵,以控制细菌的形状及其细胞质环境。在生物技术应用中,细胞内空间主要用于更大程度地积累次级产品,例如聚羟基链烷酸酯(PHA)。这篇综述提供了对丝状形态的环境诱导及其在生物技术过程中的应用的真知灼见。要点:•引起丝状形态的环境压力•生物技术过程中的形态工程•聚羟基链烷酸酯(PHAs)积累的增加。
更新日期:2020-04-03
down
wechat
bug