当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of bubble coalescence and breakup on CO2 absorption performance in nanoabsorbents
Journal of CO2 Utilization ( IF 7.7 ) Pub Date : 2020-04-06 , DOI: 10.1016/j.jcou.2020.101170
Lirong Li , Yong Tae Kang

The complexity and dynamics of bubble coalescence and breakup have fascinated scientists for decades. In this study, we performed experiments and simulations involving successively rising bubbles in a rectangular bubble column for carbon dioxide absorption in nanoabsorbents (methanol with various concentrations of alumina nanoparticles). The variations of the bubble behavior were captured by a high-speed camera in experiments and simultaneously visualized via simulations. Firstly, we distinguished the orifice region and the bulk liquid region. The bubble diameter was determined by only the gas flow rate and orifice diameter in the orifice region; however, it changed significantly in the bulk liquid region, experiencing approximately four stages. Wake entrainment and eddy capture dominated the bubble coalescence in the bulk liquid region; however, the bubble breakup was mainly caused by eddy collision and the coalescence of two bubbles with a small surface tension force. Both coalescence and breakup were more likely to occur in liquids with a higher concentration of nanoparticles. Additionally, we considered the mass transfer coefficient in the liquid phase and found that it can be enhanced by the coalescence and breakup, through the generation of polydisperse bubble swarms. A correlated parameter was deduced that can be substituted in the Hughmark equation to predict the mass transfer coefficient of the CO2–methanol–nanoparticle system.



中文翻译:

气泡聚结和破裂对纳米吸收剂中CO 2吸收性能的影响

数十年来,气泡聚结和破裂的复杂性和动力学吸引了科学家。在这项研究中,我们进行了实验和模拟,包括在矩形气泡柱中连续上升的气泡,以吸收纳米吸收剂(具有各种浓度的氧化铝纳米颗粒的甲醇)中的二氧化碳。气泡行为的变化在实验中由高速相机捕获,并通过模拟同时可视化。首先,我们区分孔口区域和本体液体区域。气泡直径仅由孔口区域中的气体流量和孔口直径决定;然而,它在大块液体区域发生了显着变化,经历了大约四个阶段。尾流夹带和涡流捕获主导了大块液体区域中的气泡合并。然而,气泡破裂主要是由涡流碰撞和两个表面张力较小的气泡聚结引起的。纳米颗粒浓度较高的液体中更容易发生聚结和破裂。此外,我们考虑了液相中的传质系数,发现通过产生多分散气泡群,聚结和分解可以提高传质系数。推导了一个相关参数,该参数可以替换为休格马克方程式,以预测CO的传质系数 我们考虑了液相中的传质系数,发现通过生成多分散气泡群,聚结和分解可以提高传质系数。推导了一个相关参数,该参数可以替换为休格马克方程式,以预测CO的传质系数 我们考虑了液相中的传质系数,发现通过生成多分散气泡群,聚结和分解可以提高传质系数。推导了一个相关参数,该参数可以替换为休格马克方程式,以预测CO的传质系数2 –甲醇–纳米颗粒系统。

更新日期:2020-04-06
down
wechat
bug