当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CO2 Separation from Flue Gas Mixture using [BMIM][BF4]/MOF composites: Linking High-throughput Computational Screening with Experiments
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-04-03 , DOI: 10.1016/j.cej.2020.124916
H. Mert Polat , Safiyye Kavak , Harun Kulak , Alper Uzun , Seda Keskin

In this study, we combined experiments with high-throughput molecular simulation methods to unlock CO2/N2 separation performances of 1085 different types of ionic liquid (IL)/metal organic framework (MOF) composites. We first validated the accuracy of our proposed computational methodology by synthesizing and characterizing three different IL/MOF composites composed of [BMIM][BF4] (1-n-butyl-3-methylimidazolium tetrafluoroborate) and by comparing their experimental CO2, N2 adsorption and separation performances with the simulation results. Motivated from the good agreement between experiments and simulations, we performed a high-throughput computational screening of 1085 different types of MOFs and their [BMIM][BF4]-incorporated counterparts to compute adsorption of CO2/N2 mixture in each material. Adsorbent performance evaluation metrics of [BMIM][BF4]/MOF composites including selectivity, working capacity, adsorbent performance score, and regenerability were calculated and compared with those of pristine MOFs to assess adsorption-based CO2/N2 separation performance limits of the composite materials. Our results revealed that [BMIM][BF4] incorporation remarkably increases CO2 selectivity, CO2 working capacity, and adsorption performance score of very large numbers of MOFs, resulting in excellent adsorbent candidates for separation of flue gas mixture. Analysis of the structure-performance relations showed that composites having narrow pore sizes, low porosities, and high IL loadings offer high CO2/N2 selectivities. These results will be useful in guiding and accelerating the design and development of new IL/MOF composites having exceptional CO2 capture performances from flue gas mixtures.



中文翻译:

[BMIM] [BF 4 ] / MOF复合材料从烟气混合物中分离CO 2:将高通量计算筛选与实验联系起来

在这项研究中,我们将实验与高通量分子模拟方法相结合,以揭示1085种不同类型的离子液体(IL)/金属有机骨架(MOF)复合材料的CO 2 / N 2分离性能。我们首先通过合成和表征由[BMIM] [BF 4 ](1- n-丁基-3-甲基咪唑四氟硼酸酯)组成的三种不同的IL / MOF复合材料,并比较它们的实验CO 2,N,验证了我们提出的计算方法的准确性。2吸附和分离性能与模拟结果。基于实验和模拟之间的良好共识,我们对1085种不同类型的MOF及其[BMIM] [BF 4 ]结合的对应物进行了高通量计算筛选,以计算每种材料中CO 2 / N 2混合物的吸附。计算了[BMIM] [BF 4 ] / MOF复合材料的吸附剂性能评估指标,包括选择性,工作能力,吸附剂性能得分和可再生性,并将其与原始MOF进行比较,以评估基于吸附剂的CO 2 / N 2分离性能极限。复合材料。我们的结果表明[BMIM] [BF 4]的引入显着提高了非常大量MOF的CO 2选择性,CO 2工作能力和吸附性能得分,从而为分离烟道气混合物提供了极好的吸附剂。对结构-性能关系的分析表明,具有窄孔尺寸,低孔隙率和高IL含量的复合材料具有较高的CO 2 / N 2选择性。这些结果将有助于指导和加快新型IL / MOF复合材料的设计和开发,这些复合材料具有出色的烟道气混合物捕获CO 2的性能。

更新日期:2020-04-06
down
wechat
bug