当前位置: X-MOL 学术Int. J. Rock Mech. Min. Sci. › 论文详情
Gas-driven rapid fracture propagation under unloading conditions in coal and gas outbursts
International Journal of Rock Mechanics and Mining Sciences ( IF 3.780 ) Pub Date : 2020-04-05 , DOI: 10.1016/j.ijrmms.2020.104325
Wenzhuo Cao; Ji-Quan Shi; Sevket Durucan; Guangyao Si; Anna Korre

Coal and gas outbursts have long posed a serious risk to safe and efficient production in coal mines. It is recognised that coal and gas outbursts are triggered by excavation unloading followed by gas-driven rapid propagation of a system of pre-existing or mining-induced fractures. Gas-filled fractures parallel to a working face are likely to experience opening first, then expansion and rapid propagation stages under unloading conditions. The fracture opening is driven by the effective stress inside the fracture, while the fracture expansion and rapid propagation is propelled by the pressure build-up of desorbed gas in the vicinity of the fracture. Based upon this understanding, this research aimed to identify the key factors affecting outburst initiation and its temporal evolution during roadway developments. Specifically, the response of pre-set fractures in a thin coal seam sandwiched between rock layers to roadway development is simulated using a geomechanical model coupled with fracture mechanics for fracture opening and propagation. In addition, kinetic gas desorption and its migration into open fractures is considered. During simulations outburst is deemed to occur when the fracture length exceeds the dimension of a host element. The findings of this research suggest that the simulated coal and gas outburst caused by roadway development may be considered as a dynamic gas desorption-driven fracture propagation process. The occurrence of coal and gas outbursts is found to be influenced mainly by the coal properties, fracture attributes, and initial gas pressure and the in situ stress conditions. Furthermore, the model predictions in terms of dome-shaped erupted-zone and layer-by-layer coal breakage are consistent with the field reports. In addition, the model results suggest that delayed occurrence of coal and gas outbursts, especially after sudden exposure of a coal seam or after blasting disturbance, reported in the literature may be related to the gas desorption behaviour.
更新日期:2020-04-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug