当前位置: X-MOL 学术Exp. Therm. Fluid Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemiluminescence-based Characterization of Tail Biogas Combustion Stability under Syngas and Oxygen-enriched Conditions
Experimental Thermal and Fluid Science ( IF 3.2 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.expthermflusci.2020.110133
Nerijus Striūgas , Kęstutis Zakarauskas , Rolandas Paulauskas , Raminta Skvorčinskienė

Abstract After the biogas is upgraded to CH4, a waste stream (tail biogas) is obtained, which contains methane in the order of few to tens vol.%. However, the composition of tail biogases can be unstable, therefore, safety should be maintained during the onsite combustion processes. Accordingly, a process control system with various sensors needs to be introduced. This study aims to analyze the experimental limits of flame stability using the chemiluminescence technique during the premixed combustion of low calorific tail biogas (mixture of CH4 with 15–30 vol% concentration in CO2) by adding oxygen or syngas. For the experimental investigation, a flat flame burner mounted in an enclosed combustion chamber was used. The stability of the flame was analyzed via the lift-off height by capturing the flame chemiluminescence from the excited OH* (282.9 nm), CH* (387.1 nm), and C2* (514.0 nm) radicals. This study reveals that the chemiluminescence spatial intensity of species such as OH*, CH*, and C2* is enhanced with an increase in the addition of syngas and oxygen. The peak position of the emission intensities in the flame shifts depending on the composition of gases, showing the existence of unstable flame that can reach its blow-off limit. When syngas is added, an excess of air leads to an increase in flame lifting; however, an O2 surplus results in more stable flame with minimized lifting. Moreover, it was determined that the lifting height of the flame is higher when syngas is added as compared to O2 enrichment. Finally, the flue gas emissions, such as CO and NOx, were examined and the most influential formation parameter was determined.

中文翻译:

合成气和富氧条件下尾沼气燃烧稳定性的化学发光表征

摘要 沼气升级为CH4 后,会产生废物流(尾沼气),其中含有少量至数十vol.% 的甲烷。然而,尾沼气的成分可能不稳定,因此在现场燃烧过程中应保持安全。因此,需要引入具有各种传感器的过程控制系统。本研究旨在通过添加氧气或合成气,在低热量尾气(CH4 与 CO2 浓度为 15-30 vol% 的混合物)预混燃烧过程中使用化学发光技术分析火焰稳定性的实验极限。对于实验研究,使用安装在封闭燃烧室中的扁平火焰燃烧器。通过从激发的 OH* (282. 9 nm)、CH* (387.1 nm) 和 C2* (514.0 nm) 自由基。该研究表明,OH*、CH*和C2*等物质的化学发光空间强度随着合成气和氧气添加量的增加而增强。火焰中发射强度的峰值位置随气体成分的变化而变化,表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。该研究表明,OH*、CH*和C2*等物质的化学发光空间强度随着合成气和氧气添加量的增加而增强。火焰中发射强度的峰值位置随气体成分的变化而变化,表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。该研究表明,OH*、CH*和C2*等物质的化学发光空间强度随着合成气和氧气添加量的增加而增强。火焰中发射强度的峰值位置随气体成分的变化而变化,表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。C2*随着合成气和氧气添加量的增加而增强。火焰中发射强度的峰值位置随气体成分的变化而变化,表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。C2*随着合成气和氧气添加量的增加而增强。火焰中发射强度的峰值位置随气体成分的变化而变化,表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。表明存在可达到其吹灭极限的不稳定火焰。当加入合成气时,过量的空气会导致火焰升力增加;然而,O2 过剩导致火焰更稳定,升力最小。此外,已确定与富氧相比,添加合成气时火焰的提升高度更高。最后,检查了烟气排放,如 CO 和 NOx,并确定了最有影响的地层参数。
更新日期:2020-08-01
down
wechat
bug