当前位置: X-MOL 学术Chem. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems
Chemical Geology ( IF 3.9 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.chemgeo.2020.119604
Bing Xiao , Huayong Chen

Abstract Chlorite is a common alteration product of fluid-rock interaction in hydrothermal deposits, and it's compositional variations provides useful information about the physicochemical conditions of formation, but element behavior during the chloritization process is still not well understood. Chlorite from two large porphyry Cu deposits, Atlas (Philippines) and Xiaokelehe (NE China) have been chosen to evaluate the geochemical variations with a focus on mass transfer during alteration of precursor minerals. Conversion of two biotite to one chlorite is the main mechanism for the chloritization of biotite. Iron, Mg, Al, and Ni are mostly retained in chlorite, whereas Co, Ga, Mn, and Zn are commonly transferred to chlorite from the hydrothermal fluid, and Sc, Sr, Si, V, Li, K, Nb, Ba, Rb, Ti, Cl, Na, Sn, and Cu from the biotite mostly do not enter chlorite during chloritization. Chlorite alteration of hornblende formed probably through the processes of dissolution-precipitation. Iron are mostly retained in the chlorite, whereas Li, Cu, Ni, Zn, Co, Al, and Ga in the chlorite are at least in part derived from hydrothermal fluid, and Mg, Mn, V, Si, Ca, Zr, Nb, Sn, Cl, REE, Y, Na, Ti, Sr, K, Sc and Ba originally in the hornblende mostly enter hydrothermal fluid, titanite or epidote, rather than chlorite during chloritization. The MgO, FeOT, MnO, Zn, Li, Sc, V, Co and Ni concentrations, and FeOT/MgO ratio of chlorite are strongly influenced by those of the precursor minerals. Moreover, although formed in the same porphyry system, the MnO, Zn, Li and Cu concentrations and FeOT/MgO ratios of chlorite formed from biotite and hornblende are markedly different. Given that Fe/Mg ratios of chlorite are controlled by the precursor minerals in wall rock, the Fe/(Fe + Mg) correction on the well-established chlorite thermometers during hydrothermal alteration may need to be reconsidered. Aluminum, Ga, and Ti in chlorite are not controlled by precursor minerals, but by formation temperature of chlorite, so we can use these elements of chlorite to map out the thermal structure of porphyry system which is related to individual mineralized porphyry intrusion, which can help to identify the centers of hydrothermal systems.

中文翻译:

绿泥石蚀变过程中的元素行为:斑岩铜系统中 EMPA 和 LA-ICPMS 联合研究的新见解

摘要 绿泥石是热液矿床中流体-岩石相互作用的常见蚀变产物,其成分变化提供了有关地层物理化学条件的有用信息,但绿泥石化过程中的元素行为仍不清楚。来自两个大型斑岩铜矿床的绿泥石被选择来评估地球化学变化,重点是前体矿物蚀变过程中的传质。两种黑云母转化为一种绿泥石是黑云母绿泥石化的主要机制。铁、镁、铝和镍大多保留在绿泥石中,而钴、镓、锰和锌通常从热液中转移到绿泥石中,而钪、锶、硅、钒、锂、钾、铌、钡、铷、钛、氯、钠、锡、黑云母中的铜在绿泥石化过程中大多不进入绿泥石。角闪石的绿泥石蚀变可能是通过溶解-沉淀过程形成的。铁主要保留在绿泥石中,而绿泥石中的 Li、Cu、Ni、Zn、Co、Al 和 Ga 至少部分来自热液,而 Mg、Mn、V、Si、Ca、Zr、Nb , Sn, Cl, REE, Y, Na, Ti, Sr, K, Sc 和 Ba 最初在角闪石中,在绿泥石化过程中大多进入热液流体、钛铁矿或绿帘石,而不是绿泥石。绿泥石的 MgO、FeOT、MnO、Zn、Li、Sc、V、Co 和 Ni 浓度以及 FeOT/MgO 比受前体矿物的影响很大。此外,虽然在同一斑岩系统中形成,但 MnO、Zn、由黑云母和角闪石形成的绿泥石的 Li 和 Cu 浓度以及 FeOT/MgO 比率明显不同。鉴于绿泥石的 Fe/Mg 比率受围岩中的前体矿物控制,可能需要重新考虑在热液蚀变过程中对完善的绿泥石温度计的 Fe/(Fe + Mg) 校正。绿泥石中的铝、镓、钛不受前体矿物的控制,而是受绿泥石形成温度的控制,因此我们可以利用绿泥石的这些元素绘制出与个别矿化斑岩侵入有关的斑岩系统热结构图,可以有助于确定热液系统的中心。可能需要重新考虑在热液蚀变过程中对完善的绿泥石温度计的 Fe/(Fe + Mg) 校正。绿泥石中的铝、镓、钛不受前体矿物的控制,而是受绿泥石形成温度的控制,因此我们可以利用绿泥石的这些元素绘制出与个别矿化斑岩侵入有关的斑岩系统热结构图,可以有助于确定热液系统的中心。可能需要重新考虑在热液蚀变过程中对完善的绿泥石温度计的 Fe/(Fe + Mg) 校正。绿泥石中的铝、镓、钛不受前体矿物的控制,而是受绿泥石形成温度的控制,因此我们可以利用绿泥石的这些元素绘制出与个别矿化斑岩侵入体有关的斑岩系统热结构图,可以有助于确定热液系统的中心。
更新日期:2020-06-01
down
wechat
bug