当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Bayesian Safe Learning and Control with Sum-of-Squares Analysis and Polynomial Kernels
arXiv - CS - Systems and Control Pub Date : 2020-04-01 , DOI: arxiv-2004.00662
Alex Devonport; He Yin; Murat Arcak

We propose an iterative method to safely learn the unmodeled dynamics of a nonlinear system using Bayesian Gaussian process (GP) models with polynomial kernel functions. The method maintains safety by ensuring that the system state stays within the region of attraction (ROA) of a stabilizing control policy while collecting data. A quadratic programming based exploration control policy is computed to keep the exploration trajectory inside an inner-approximation of the ROA and to maximize the information gained from the trajectory. A prior GP model, which incorporates prior information about the unknown dynamics, is used to construct an initial stabilizing policy. As the GP model is updated with data, it is used to synthesize a new policy and a larger ROA, which increases the range of safe exploration. The use of polynomial kernels allows us to compute ROA inner-approximations and stabilizing control laws for the model using sum-of-squares programming. We also provide a probabilistic guarantee of safety which ensures that the policy computed using the learned model stabilizes the true dynamics with high confidence.
更新日期:2020-04-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug