当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Exploration of Reinforcement Learning for Event Camera using Car-like Robots
arXiv - CS - Robotics Pub Date : 2020-04-02 , DOI: arxiv-2004.00801
Riku Arakawa; Shintaro Shiba

We demonstrate the first reinforcement-learning application for robots equipped with an event camera. Because of the considerably lower latency of the event camera, it is possible to achieve much faster control of robots compared with the existing vision-based reinforcement-learning applications using standard cameras. To handle a stream of events for reinforcement learning, we introduced an image-like feature and demonstrated the feasibility of training an agent in a simulator for two tasks: fast collision avoidance and obstacle tracking. Finally, we set up a robot with an event camera in the real world and then transferred the agent trained in the simulator, resulting in successful fast avoidance of randomly thrown objects. Incorporating event camera into reinforcement learning opens new possibilities for various robotics applications that require swift control, such as autonomous vehicles and drones, through end-to-end learning approaches.
更新日期:2020-04-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug