当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Approach to Electrochemically Switchable Monolayer MoS2 Transistors.
Advanced Materials ( IF 29.4 ) Pub Date : 2020-04-02 , DOI: 10.1002/adma.202000740
Yuda Zhao 1 , Simone Bertolazzi 1 , Maria Serena Maglione 2 , Concepció Rovira 2 , Marta Mas-Torrent 2 , Paolo Samorì 1
Affiliation  

As Moore's law is running to its physical limit, tomorrow's electronic systems can be leveraged to a higher value by integrating "More than Moore" technologies into CMOS digital circuits. The hybrid heterostructure composed of two-dimensional (2D) semiconductors and molecular materials represents a powerful strategy to confer new properties to the former components, realize stimuli-responsive functional devices, and enable diversification in "More than Moore" technologies. Here, an ionic liquid (IL) gated 2D MoS2 field-effect transistor (FET) with molecular functionalization is fabricated. The suitably designed ferrocene-substituted alkanethiol molecules not only improve the FET performance, but also show reversible electrochemical switching on the surface of MoS2 . Field-effect mobility of monolayer MoS2 reaches values as high as ≈116 cm2 V-1 s-1 with Ion /Ioff ratio exceeding 105 . Molecules in their neutral or charged state impose distinct doping effect, efficiently tuning the electron density in monolayer MoS2 . It is noteworthy that the joint doping effect from IL and switchable molecules results in the steep subthreshold swing of MoS2 FET in the backward sweep. These results demonstrate that the device architecture represents an unprecedented and powerful strategy to fabricate switchable 2D FET with a chemically programmed electrochemical signal as a remote control, paving the road toward novel functional devices.

中文翻译:

电化学可开关单层MoS2晶体管的分子方法。

由于摩尔定律已达到其物理极限,通过将“摩尔定律”技术集成到CMOS数字电路中,可以将明天的电子系统利用到更高的价值。由二维(2D)半导体和分子材料组成的混合异质结构代表了一种强大的策略,可以为以前的组件赋予新的特性,实现刺激响应的功能性设备,并实现“摩尔定律”技术的多样化。在此,制造了具有分子功能化的离子液体(IL)门控2D MoS2场效应晶体管(FET)。适当设计的二茂铁取代的链烷硫醇分子不仅可以改善FET性能,而且在MoS2的表面显示出可逆的电化学转换。单层MoS2的场效应迁移率达到了≈116cm2​​ V-1 s-1的高值,其中Ion / Ioff比超过105。处于中性或带电状态的分子具有独特的掺杂效果,可有效调节单层MoS2中的电子密度。值得注意的是,IL和可转换分子的联合掺杂效应会导致MoS2 FET在反向扫描中出现陡峭的亚阈值摆幅。这些结果表明,该器件架构代表了一种前所未有的强大策略,可通过化学编程的电化学信号作为遥控器来制造可切换2D FET,这为新型功能器件铺平了道路。有效地调节单层MoS2中的电子密度。值得注意的是,IL和可切换分子的联合掺杂效应导致MoS2 FET在向后扫描中出现陡峭的亚阈值摆幅。这些结果表明,该器件架构代表了一种前所未有的强大策略,可通过化学编程的电化学信号作为遥控器来制造可切换2D FET,从而为新型功能器件铺平了道路。有效地调节单层MoS2中的电子密度。值得注意的是,IL和可转换分子的联合掺杂效应会导致MoS2 FET在反向扫描中出现陡峭的亚阈值摆幅。这些结果表明,该器件架构代表了一种前所未有的强大策略,可通过化学编程的电化学信号作为遥控器来制造可切换2D FET,这为新型功能器件铺平了道路。
更新日期:2020-04-02
down
wechat
bug