当前位置: X-MOL 学术Photonics Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic effects of electric-field-enhancement and charge-transfer based SERS study in Ag₂S quantum dots/plasmonic bow-tie nanoantenna composite system
Photonics Research ( IF 7.6 ) Pub Date : 2020-03-31 , DOI: 10.1364/prj.383612
Bin Wang , Chen Zhao , Huanyu Lu , Tingting Zou , Subhash C. Singh , Zhi Yu , Chaonan Yao , Xin Zheng , Jun Xing , Yuting Zou , Cunzhu Tong , Weili Yu , Bo Zhao , Chunlei Guo

Localized surface plasmon resonance (LSPR) of nanostructures and the interfacial charge transfer (CT) of semiconductor materials play essential roles in the study of optical and photoelectronic properties. In this paper, a composite substrate of Ag2S quantum dots (QDs) coated plasmonic Au bowtie nanoantenna (BNA) arrays with a metal–insulator–metal (MIM) configuration was built to study the synergistic effect of LSPR and interfacial CT using surface-enhanced Raman scattering (SERS) in the near-infrared (NIR) region. The Au BNA array structure with a large enhancement of the localized electric field (E-field) strongly enhanced the Raman signal of adsorbed p-aminothiophenol (PATP) probe molecules. Meanwhile, the broad enhanced spectral region was achieved owing to the coupling of LSPR. The as-prepared Au BNA array structure facilitated enhancements of the excitation as well as the emission of Raman signal simultaneously, which was established by finite-difference time-domain simulation. Moreover, Ag2S semiconductor QDs were introduced into the BNA/PATP system to further enhance Raman signals, which benefited from the interfacial CT resonance in the BNA/Ag2S-QDs/PATP system. As a result, the Raman signals of PATP in the BNA/Ag2S-QDs/PATP system were strongly enhanced under 785 nm laser excitation due to the synergistic effect of E-field enhancement and interfacial CT. Furthermore, the SERS polarization dependence effects of the BNA/Ag2S-QDs/PATP system were also investigated. The SERS spectra indicated that the polarization dependence of the substrate increased with decreasing polarization angles (θpola) of excitation from p-polarized (θpola=90°) excitation to s-polarized (θpola=0°) excitation. This study provides a strategy using the synergistic effect of interfacial CT and E-field enhancement for SERS applications and provides a guidance for the development of SERS study on semiconductor QD-based plasmonic substrates, and can be further extended to other material-nanostructure systems for various optoelectronic and sensing applications.

中文翻译:

基于电场增强和电荷转移的 SERS 研究在 Ag2S 量子点/等离子体领结纳米天线复合系统中的协同效应

纳米结构的局域表面等离子体共振 (LSPR) 和半导体材料的界面电荷转移 (CT) 在光学和光电特性的研究中起着至关重要的作用。在本文中,构建了具有金属 - 绝缘体 - 金属(MIM)配置的 Ag2S 量子点(QDs)涂覆等离子体 Au 蝴蝶结纳米天线(BNA)阵列的复合基板,以使用表面增强技术研究 LSPR 和界面 CT 的协同效应。近红外 (NIR) 区域的拉曼散射 (SERS)。局部电场(E场)大幅增强的Au BNA阵列结构强烈增强了吸附对氨基苯硫酚(PATP)探针分子的拉曼信号。同时,由于LSPR的耦合,实现了宽广的增强光谱区域。所制备的 Au BNA 阵列结构有助于同时增强激发和拉曼信号的发射,这是通过有限差分时域模拟建立的。此外,将 Ag2S 半导体量子点引入 BNA/PATP 系统以进一步增强拉曼信号,这得益于 BNA/Ag2S-QDs/PATP 系统中的界面 CT 共振。因此,由于电场增强和界面 CT 的协同作用,BNA/Ag2S-QDs/PATP 系统中 PATP 的拉曼信号在 785 nm 激光激发下强烈增强。此外,还研究了 BNA/Ag2S-QDs/PATP 系统的 SERS 极化依赖性效应。SERS 光谱表明基板的偏振相关性随着从 p 偏振 (θpola=90°) 激发到 s 偏振 (θpola=0°) 激发的激发偏振角 (θpola) 的减小而增加。该研究为SERS应用提供了一种利用界面CT和电场增强的协同效应的策略,并为半导体QD基等离子体衬底的SERS研究的发展提供了指导,并可进一步扩展到其他材料-纳米结构系统中各种光电和传感应用。
更新日期:2020-03-31
down
wechat
bug