当前位置: X-MOL 学术IEEE Access › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comprehensive Design of Device Parameters for GaN Vertical Trench MOSFETs
IEEE Access ( IF 3.9 ) Pub Date : 2020-01-01 , DOI: 10.1109/access.2020.2977381
Shuang Liu , Xiufeng Song , Jincheng Zhang , Shenglei Zhao , Jun Luo , Hong Zhang , Yachao Zhang , Weihang Zhang , Hong Zhou , Zhihong Liu , Yue Hao

In this work, device parameters for GaN vertical trench MOSFETs have been investigated systematically to further improve the device characteristics. The n GaN drift layer, the p+ GaN layer and the trench gate are designed and optimized systematically using Silvaco ATLAS 2-D simulation, in order to get the best trade-off between $V_{\mathrm {BR}}$ and specific on-resistance $R_{\mathrm {on}}$ . Three-terminal breakdown curves, the electron concentration, current density and electric field strength distributions have been presented to analyze the breakdown characteristics. The correlations between different parameters and different initial conditions are considered, and the eight parameters are optimized comprehensively. After the final optimization, record high FOM of 4.8 GW/cm2, $V_{\mathrm {BR}}$ of 2783 V, average electric field $E_{\mathrm {drift}}$ of 1.98 MV/cm and a low $R_{\mathrm {on}}$ of 1.6 $\text{m}\Omega \cdot $ cm2 are obtained for drift layer thickness of $14~\mu \text{m}$ . The product of the thickness $L_{\mathrm {p}}$ and doping density $N_{\mathrm {p}}$ of p+ GaN layer can determine the breakdown mechanism, and punch through mechanism would occur when $L_{\mathrm {p}}\cdot N_{\mathrm {p}}$ is lower than a certain value. The results indicate there exists large optimization room for fabricated GaN vertical trench MOSFETs, and the device characteristics can be further improved through the methodology in this paper for high power and high voltage applications.

中文翻译:

GaN垂直沟槽MOSFET器件参数的综合设计

在这项工作中,系统地研究了 GaN 垂直沟槽 MOSFET 的器件参数,以进一步改善器件特性。n - GaN 漂移层、p + GaN 层和沟槽栅极使用 Silvaco ATLAS 2-D 模拟系统地设计和优化,以获得最佳的权衡 $V_{\mathrm {BR}}$ 和特定导通电阻 $R_{\mathrm {on}}$ . 给出了三端击穿曲线、电子浓度、电流密度和电场强度分布来分析击穿特性。考虑了不同参数和不同初始条件之间的相关性,综合优化了8个参数。经过最终优化,创纪录的 FOM 高达 4.8 GW/cm 2 $V_{\mathrm {BR}}$ 2783 V,平均电场 $E_{\mathrm {漂移}}$ 1.98 MV/cm 和低 $R_{\mathrm {on}}$ 共 1.6 $\text{m}\Omega \cdot $ cm 2获得漂移层厚度 $14~\mu \text{m}$ . 厚度的乘积 $L_{\mathrm {p}}$ 和掺杂密度 $N_{\mathrm {p}}$ p + GaN 层的厚度可以确定击穿机制,当出现击穿机制时 $L_{\mathrm {p}}\cdot N_{\mathrm {p}}$ 低于某个值。结果表明制造的GaN垂直沟槽MOSFET存在很大的优化空间,通过本文的方法可以进一步改善器件特性,用于高功率和高电压应用。
更新日期:2020-01-01
down
wechat
bug