当前位置: X-MOL 学术Water › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid-Structure Interaction Response of a Water Conveyance System with a Surge Chamber during Water Hammer
Water ( IF 3.4 ) Pub Date : 2020-04-03 , DOI: 10.3390/w12041025
Qiang Guo , Jianxu Zhou , Yongfa Li , Xiaolin Guan , Daohua Liu , Jian Zhang

Fluid–structure interaction (FSI) is a frequent and unstable inherent phenomenon in water conveyance systems. Especially in a system with a surge chamber, valve closing and the subsequent water level oscillation in the surge chamber are the excitation source of the hydraulic transient process. Water-hammer-induced FSI has not been considered in preceding research, and the results without FSI justify further investigations. In this study, an FSI eight-equation model is presented to capture its influence. Both the elbow pipe and surge chamber are treated as boundary conditions, and solved using the finite volume method (FVM). After verifying the feasibility of using FVM to solve FSI, friction, Poisson, and junction couplings are discussed in detail to separately reveal the influence of a surge chamber, tow elbows, and a valve on FSI. Results indicated that the major mechanisms of coupling are junction coupling and Poisson coupling. The former occurs in the surge chamber and elbows. Meanwhile, a stronger pressure pulsation is produced at the valve, resulting in a more complex FSI response in the water conveyance system. Poisson coupling and junction coupling are the main factors contributing to a large amount of local transilience emerging on the dynamic pressure curves. Moreover, frictional coupling leads to the lower amplitudes of transilience. These results indicate that the transilience is induced by the water hammer–structure interaction and plays important roles in the orifice optimization in the surge chamber.

中文翻译:

带稳压室的输水系统在水锤过程中的流固耦合响应

流固耦合 (FSI) 是输水系统中常见且不稳定的固有现象。特别是在带有调压室的系统中,阀门关闭和随后调压室内的水位振荡是水力暂态过程的激励源。在之前的研究中没有考虑水锤引起的 FSI,没有 FSI 的结果证明进一步调查是合理的。在本研究中,提出了 FSI 八方程模型来捕捉其影响。弯管和调压室均被视为边界条件,并使用有限体积法 (FVM) 求解。在验证了使用 FVM 求解 FSI 的可行性后,详细讨论了摩擦、泊松和连接耦合,分别揭示了缓冲室、牵引弯头和阀门对 FSI 的影响。结果表明,耦合的主要机制是结耦合和泊松耦合。前者发生在稳压室和肘部。同时,阀门处会产生更强的压力脉动,导致输水系统中更复杂的 FSI 响应。泊松耦合和结耦合是导致动态压力曲线上出现大量局部瞬变的主要因素。此外,摩擦耦合导致较低的瞬变幅度。这些结果表明瞬变是由水锤-结构相互作用引起的,并且在稳压室的孔口优化中起着重要作用。在阀门处产生更强的压力脉动,导致输水系统中更复杂的 FSI 响应。泊松耦合和结耦合是导致动态压力曲线上出现大量局部瞬变的主要因素。此外,摩擦耦合导致较低的瞬变幅度。这些结果表明瞬变是由水锤-结构相互作用引起的,并且在稳压室的孔口优化中起着重要作用。在阀门处产生更强的压力脉动,导致输水系统中更复杂的 FSI 响应。泊松耦合和结耦合是导致动态压力曲线上出现大量局部瞬变的主要因素。此外,摩擦耦合导致较低的瞬变幅度。这些结果表明瞬变是由水锤-结构相互作用引起的,并且在稳压室的孔口优化中起着重要作用。摩擦耦合导致较低的瞬变幅度。这些结果表明瞬变是由水锤-结构相互作用引起的,并且在稳压室的孔口优化中起着重要作用。摩擦耦合导致较低的瞬变幅度。这些结果表明瞬变是由水锤-结构相互作用引起的,并且在稳压室的孔口优化中起着重要作用。
更新日期:2020-04-03
down
wechat
bug