当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Penalized multiple distribution selection method for imbalanced data classification
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-04-03 , DOI: 10.1016/j.knosys.2020.105833
Ge Shi; Chong Feng; Wenfu Xu; Lejian Liao; Heyan Huang

In reality, the amount of data from different categories varies significantly, which results in learning bias towards prominent classes, hindering the overall classification performance. In this paper, by proving that traditional classification methods that use single softmax distribution are limited for modeling complex and imbalanced data, we propose a general Multiple Distribution Selection (MDS) method for imbalanced data classification. MDS employs a mixture distribution that is composed of a single softmax distribution and a set of degenerate distributions to model imbalanced data. Furthermore, a dynamic distribution selection method, based on L1 regularization, is also proposed to automatically determine the weights of distributions. In addition, the corresponding two-stage optimization algorithm is designed to estimate the parameters of models. Extensive experiments conducted on three widely used benchmark datasets (IMDB, ACE2005, 20NewsGroups) show that our proposed mixture method outperforms previous methods. Moreover, under highly imbalanced setting, our method achieves up to a 4.1 absolute F1 gain over high-performing baselines.
更新日期:2020-04-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug