当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3.
Biotechnology for Biofuels ( IF 6.3 ) Pub Date : 2020-04-01 , DOI: 10.1186/s13068-020-01701-3
Yumeng Chen 1 , Chuan Wu 1 , Xingjia Fan 1 , Xinqing Zhao 2 , Xihua Zhao 3 , Tao Shen 4 , Dongzhi Wei 1 , Wei Wang 1
Affiliation  

Background The filamentous fungus Trichoderma reesei is a major workhorse employed to produce cellulase, which hydrolyzes lignocellulosic biomass for the production of cellulosic ethanol and bio-based products. However, the economic efficiency of biorefineries is still low. Results In this study, the truncation of cellulase activator ACE3 was identified and characterized in T. reesei classical mutant NG14 and its direct descendants for the first time. We demonstrated that the truncated ACE3 is the crucial cause of cellulase hyper-production in T. reesei NG14 branch. Replacing the native ACE3 with truncated ACE3 in other T. reesei strains remarkably improves cellulase production. By truncating ACE3, we engineered a T. reesei mutant, PC-3-7-A723, capable of producing more cellulase than other strains. In a 30-L fermenter, fed-batch fermentation with PC-3-7-A723 drastically increased the maximum cellulase titer (FPase) to 102.63 IU/mL at 240 h, which constitutes a 20-30% improvement to that of the parental strain PC-3-7. Conclusions This work characterized the function of truncated ACE3 and demonstrated that analysis of classical mutants allows rational engineering of mutant strains with improved cellulase production necessary to process lignocellulosic biomass. Our rational engineering strategy might be useful for enhancing the production of other bio-based products.

中文翻译:

通过截断纤维素酶激活剂 ACE3 对里氏木霉进行工程改造以增强木质纤维素生物质的降解。

背景丝状真菌里氏木霉是用于生产纤维素酶的主要主力,其水解木质纤维素生物质以生产纤维素乙醇和生物基产品。然而,生物精炼厂的经济效益仍然很低。结果本研究首次在里氏木霉经典突变体NG14及其直系后代中鉴定和表征了纤维素酶激活剂ACE3的截短。我们证明了截断的 ACE3 是里氏木霉 NG14 分支中纤维素酶过度生产的关键原因。在其他里氏木霉菌株中用截短的 ACE3 代替天然 ACE3 可显着提高纤维素酶的产量。通过截断 ACE3,我们设计了一种里氏木霉突变体 PC-3-7-A723,它能够比其他菌株产生更多的纤维素酶。在一个 30 升的发酵罐中,PC-3-7-A723 的补料分批发酵在 240 小时时将最大纤维素酶滴度 (FPase) 大幅提高至 102.63 IU/mL,这比亲本菌株 PC-3-7 提高了 20-30%。结论 这项工作表征了截短的 ACE3 的功能,并证明了对经典突变体的分析允许对突变菌株进行合理的工程改造,从而提高纤维素酶的产量,这是处理木质纤维素生物质所必需的。我们合理的工程策略可能有助于提高其他生物基产品的生产。结论 这项工作表征了截短的 ACE3 的功能,并证明了对经典突变体的分析允许对突变菌株进行合理的工程改造,从而提高纤维素酶的产量,这是处理木质纤维素生物质所必需的。我们合理的工程策略可能有助于提高其他生物基产品的生产。结论 这项工作表征了截短的 ACE3 的功能,并证明了对经典突变体的分析允许对突变菌株进行合理的工程改造,从而提高纤维素酶的产量,这是处理木质纤维素生物质所必需的。我们合理的工程策略可能有助于提高其他生物基产品的生产。
更新日期:2020-04-22
down
wechat
bug